

Staging of eRHIC Increased Reach in c.m. Energy and Luminosity

Vladimir N. Litvinenko

C-AD, Brookhaven National Laboratory, Upton, NY, USA Department of Physics and Astronomy, Stony Brook University Center for Accelerator Science and Education, SBU & BNL

Contributions:

I.Ben Zvi, S.Burgos A.Deshpande, R.Ent, A.Fedotov, Y.Hao, T.Horn, D.Kayran, R.Milner, E.Pozdeyev, V.Ptitsyn, T.Roser, J. Tuozzolo, T.Ulrich, S.Vigdor

eRHIC Scope -QCD Factory

Center mass energy range: 15-200 GeV

New requirements: eA program for eRHIC needs as high as possible energies of electron beams even with a trade-off for the luminosity. <u>20 GeV is absolutely essential and 30 GeV is strongly desirable</u>.

Staging of eRHIC: Energy Reach and Luminosity

- MEIC: Medium Energy Electron-Ion Collider
 - Both Accelerator and Detector are located at IP2 of RHIC
 - 2 or 4 GeV e⁻ x 250 GeV p (45 or 63 GeV c.m.), L ~ 10^{32} - 10^{33} cm⁻² sec ⁻¹
- eRHIC, High energy and luminosity phase, inside RHIC tunnel Full energy, nominal luminosity,
 - Polarized 20 GeV e⁻ x 325 GeV p (160 GeV c.m), L ~ 10³³-10³⁴ cm⁻² sec
 - 30 GeV e x 120 GeV/n Au (120 GeV c.m.), ~1/5 of full luminosity
 - and 20 GeV e x 120 GeV/n Au (120 GeV c.m.), full liminosity
- eRHIC, 10 GeV elevated luminosity phase, inside RHIC tunnel
 - Higher luminosity at reduced energy, can be added if needed
 - Polarized 10 GeV e⁻ x 325 GeV p, L ~ 10³⁵ cm⁻² sec ⁻¹
 - Smaller improvements (3-4 fold) in e-Ion collisions

Staging of eRHIC: Cost, Re-use, Beams and Energetics

- **MEeIC**: Medium Energy electron-Ion Collider
 - Cost estimate \$150M (in 2007 \$) for 2 GeV e⁻ version
 cost of 4 GeV version will be estimated before next EIC meeting
 - Polarized beam current of 50 mA
 - 90% of ERL hardware will be use in the phase I (and will reduce cost of eRHIC)
 - Possible use of the detector components for eRHIC detectors
- eRHIC High energy and luminosity phase
 - Based on present RHIC beam intensities
 - With coherent electron cooling requirements on the electron beam current is 25 mA
 - 20 GeV, 25 mA electron beam losses 1.92 MW total for synchrotron radiation.
 - 30 GeV, 5 mA electron beam loses 1.98 MW for synchrotron radiation
 - Power density is 1 kW/meter and is well within B-factory limits (8 kW/m)
- eRHIC 10 GeV elevated luminosity phase
 - Requires crab cavities, new injections, Cu-coating of RHIC vacuum chambers, new level of intensities in RHIC
 - Polarized electron source current of 400 mA
 - 10 GeV, 400 mA electron beam losses 1.96 MW total for synchrotron radiation,
 - power density is 1 kW/meter

NATIONAL LABORATORY

V.N. Litvinenko, EIC Collaboration Meeting, LBNL, 11-13 December, 2008

NATIONAL LABORATORY

Contest to name first MEeIC experiment

Inspired by the physics and history :
 -OompheP (sug. pron: U u m ff e P)
 -eP-Oomph.....

Prize - A bottle of good champagne Send suggestions to vl@bnl.gov

6

V.N. Litvinenko, ElC Collaboration Meeting, LBNL, 11-13 December, 2008

Geometry of IP2 for MEeIC

V.N. Litvinenko, ElC Collaboration Meeting, LBNL, 11-13 December, 2008

Beyond eRHIC-> eRHIC II c.m. Energy of HERA and 1000x Luminosity

- eRHIC II: replacing RHIC-ring magnets by new with 8 T
 - proton energy in RHIC to ~ 800 GeV c.m.e. 250 GeV
 - will require more snakes for polarized proton operation
 - heavy ions with ~ 300 GeV/n, c.m.e. 200 GeV
- eRHIC II Full energy, nominal luminosity
 - inside RHIC tunnel
 - Polarized 20 GeV e⁻ x 800 GeV p (~300 GeV c.m), L ~ 10³⁴ cm⁻² sec ⁻¹
 - 30 GeV e x 300 GeV/n Au (~200 GeV c.m.), L ~ 10^{32} cm⁻² sec ⁻¹

Note: It will cost at the ELIC level - they plan to use 2.5 km of 8 T magnets for its two-turn (figure-8) hadron ring. eRHIC II will need about 20-30% more of magnets, but 3.8 km RHIC tunnel and RHIC refregirator facility already exists!.....

eRHIC parameters evolution

	Base ERL design	
	p (A)	e
Energy, GeV	250 (100)	10
Number of bunche	166	
Bunch intensity (u) , 1011	2.0 (3)	1.2
Bunch charge, nC	32	20
Beam current, mA	420	260
Normalized emittance, 1e-6 m, 95% for p / rms for e	6	80
Polarization, %	70	80
rms bunch length, cm	20	0.2
β*, cm	26	25
Luminosity, $\times 10^{33}$, cm ⁻² s ⁻¹	2.6	

eRHIC loop magnets: LDRD project

- Small gap provides for low current, low power consumption magnets •
- Magnetic design W.Meng, mechanical engineering G.Mahler •
- Beam dynamics Y.Hao, J.Bengtsson •

V.N. Litvinenko, ElC Collaboration Meeting, LBNL, 11-13 December, 2008

U.S. DEPARTMENT OF ENERGY

eRHIC loop magnets and vacuum chamber: progress

V.N. Litvinenko, ElC Collaboration Meeting, LBNL, 11-13 December, 2008

U.S. DEPARTMENT OF ENERGY

MEeIC progress

- Staging & MEeIC idea first discussed March 2008
- Presented at EIC Collaboration meeting May 2008
- Add-hoc MEeIC meeting at BNL September 2008, two options with 2 and 4 GeV electrons discussed
- MEeIC Technical Design, <u>Leader Vadim Ptitsyn</u>, Goal is to complete the design in Spring 2009
 - Chosed IP-2 at RHIC as preferable location for MEeIC and its IP
 - ERL-based e-beam, 2 GeV and 4 GeV options
 - Kick-off meeting, October 2008
 - Bi-weekly meetings on MEeIC

NATIONAL LABORATORY

- Defined the main beam parameter and possible up-grades
- Defined the geometry of the accelerator
- Defined SRF-linac structure (no 3rd harmonic) and layout
- Addressed potential show-stoppers: SR, CSR, power losses, beam-beam....
- Plan to present MEeIC Technical Design at next EICC meeting

MEEIC Layout pass energies are shown for 4 GeV top energy

15

V.N. Litvinenko, EIC Collaboration Meeting, LBNL, 11-13 December, 2008

Option for 4 GeV e-beam

Less expensive magnets Need for some civil construction

Choice for 4 GeV option will be driven by \$\$\$\$\$ cost

V.N. Litvinenko, EIC Collaboration Meeting, LBNL, 11-13 December, 2008

MEeIC parameters for e-p collisions

	not cooled		pre-cooled		high energy cooling	
	р	е	р	е	р	e
Energy, GeV	250	4	250	4	250	4
Number of bunches	111		111		111	
Bunch intensity, 10 ¹¹	2.0	0.31	2.0	0.31	2.0	0.31
Bunch charge, nC	32	5	32	5	32	5
Normalized emittance, 1e-6 m, 95% for p / rms for e	15	73	6	29	1.5	7.3
rms emittance, nm	9.4	9.4	3.8	3.8	0.94	0.94
beta*, cm	50	50	50	50	50	50
rms bunch length, cm	20	0.2	20	0.2	5	0.2
beam-beam for p /disruption for e	1.5e-3	3.1	3.8e-3	7.7	0.015	15
Peak Luminosity, 1e32, cm ⁻² s ⁻¹	0.93		2.3		9.3	

© V.Ptitsyn

V.N. Litvinenko, ElC Collaboration Meeting, LBNL, 11-13 December, 2008

The distance between the linacs axis is 6.3 m

80% fill factor gives the radius 2.5 m

Assuming no cryostats and quads size 15 cm

© D.Kayran

V.N. Litvinenko, EIC Collaboration Meeting, LBNL, 11-13 December, 2008

MEeIC: IP2 for ERL location

Left side is about twice wider, we may assume the maximum radius 5 m

© D.Kayran

19

V.N. Litvinenko, ElC Collaboration Meeting, LBNL, 11-13 December, 2008

MEeIC: Some of ERL parameters

e-Beam energy in the last right arc: E_{max} - $\Delta E_{perpass}/2$ Energy losses full turn [KeV]=88.5 E[GeV]⁴ /R[m]

E _{col,} GeV	2	3	4	4
E _{arc} , GeV	1.67	2.5	3.33	4
R, m (80% filling factor)	2.5	2.5	2.5	5
Current, mA	50	50	50	50
Number of passes	3	3	3	3
Dipole magnetic field, T	2.2	3.3	4.4	2.7
Energy losses per arc (half turn), MeV	0.05	0.7	2.2	2.3
Power losses per arc, kW Density, kW/m	2.5 0.32	35.2 4.5	110.7 14.1	115.2 7.33

© D.Kayran

V.N. Litvinenko, EIC Collaboration Meeting, LBNL, 11-13 December, 2008

Do we need 3rd harmonic RF system?

Momentum spread vs. longitudinal coordinate: acceleration/ deceleration

© V.Ptitsyn

21

V.N. Litvinenko, EIC Collaboration Meeting, LBNL, 11-13 December, 2008

Coherent Synchrotron Radiation (CSR) and bunch length for MEeIC - free space

Increase in rms dp/p after passing full arc (R=2m) at 2GeV

© A.Fedotov

NATIONAL LABORATORY

$$\left\langle \frac{p - p_0}{p_0} \right\rangle = -0.35 \frac{r_e N_e L_{eff}}{\gamma (R^2 \sigma_{es}^4)^{1/3}}$$

$$\sigma_p = 0.25 \frac{r_e N_e L_{eff}}{\gamma (R^2 \sigma_{es}^4)^{1/3}}$$

$$\frac{P_{coh}}{P_{inc}} = \frac{3^{7/6}}{4\pi} \Gamma(2/3) \frac{N_e}{\gamma^4} \left(\frac{R}{\sigma_z}\right)^{4/3}$$

For N_e=3e10 (5nC), σ_z =5mm: P_{ratio} is 0.017 for 4 GeV P_coh=280W/m for R=3m P_coh=370W/m for R=2m

Can be important! for 1mm rms bunch length & R=2m, 22 P_coh is already 3 kW/m

V.N. Litvinenko, ElC Collaboration Meeting, LBNL, 11-13 December, 2008

Suppression of CSR by wall shielding

where h is beam pipe full height, and R is the radius of the orbit in bending magnet.

For radiation to be coherent the bunch length should be:

$\sigma_z \le \frac{h}{\pi} \sqrt{\frac{3h}{2\pi R}}$ CSR suppression parameter

Effectiveness of shielding is described by parameter: $x_{th} = \frac{2\pi^3 R \sigma_z^2}{3k^3}$

For x < 1, there is no suppression from shielding.

For $1 < x < 4p^2$, there is strong reduction of CSR:

For $x > 4p^2$, CSR is completely suppressed by shielding:

- If h=1cm then CSR will be completely shielded for bunch

length 1mm rms (full length 4.8mm) or larger.

 $F(x) = x^{-1/3}e^{-x}$

 $\sigma_{th,\min} = \sqrt{\frac{6h^3}{\pi P}}$

- If h=3cm will be completely shielded for 5mm (full length 2.6cm) or larger. But even for 1mm rms -

reduction factor is F=0.2.

© A.Fedotov

© E.Pozdeyev

V.N. Litvinenko, EIC Collaboration Meeting, LBNL, 11-13 December, 2008

Energy loss to Cavity Wakes E. Pozdeyev

qb (pC)	5000		I(A)	0.05	
fb (Hz)	1.00E+007		ncav	360	
sig(mm)	kii (V/pC)	kii_adj (V/pC)	Vloss (MV)	Ploss (kW)	dVtot (MV)
1.500	-4.336	-3.817	-6.8706	-343.530	-9.288
1.800	-3.797	-3.281	-5.9058	-295.290	-8.136
2.000	-3.504	-2.990	-5.382	-269.100	-7.47
2.500	-2.951	-2.437	-4.3866	-219.330	-6.138
5.000	-1.744	-1.232	-2.2176	-110.880	-3.186
7.500	-1.304	-0.796	-1.4328	-71.640	-1.872
10.000	-1.071	-0.567	-1.0206	-51.030	-1.548

Related issues:

-Compensation of average energy loss (Vloss), to eliminate energy difference in the same pass for accelerating and decelerating beam. (Second harmonic cavities?)

-Managing HOM power output.

Reduction of the energy spread (dVtot) for lower energy (10 MeV) transfer

25

Office of

Beamsize and Emittance evolution of electron beam: © Y.Hao (Electron beam comes from right)

Effective emittance growth during collision due to mismatch between the electron distribution and design lattice. This is main effect comparing with the geometric₂₆ emittance growth due to pure nonlinear effect.

NATIONAL LABORATORY

'Pre Cooled' Case

Similar results are achieved.

The electron beta function waist is at s=0.1m (ahead of IP from electron point of view) to maximize the luminosity.

An example of electron optics:

Initial Emittance: Waist beta function: Waist position: Luminosity:

NATIONAL LABORATORY

1.4e-07

1.2e-07

1e-07

8e-08

6e-08

3.5e+32

3e+32

2.5e+32

2e+32

1.5e+32

[cm-2s-1]

<u>Proton beam instability can be suppressed by choosing value</u> <u>appropriate chromatisity</u> © Y.Hao

In both cases, the beam parameters are above the threshold of kink instability for proton beam. Proper energy spread is needed to suppress the emittance growth.

Conclusions

- eRHIC group at C-AD, BNL plans to complete technical design of MEeIC in Spring, 2009
- MEeIC needs physics case
- Staging eRHIC allows for a natural transition of the accelerator with significant (~90%) re-use of equipment from MEIC and reduction in the eRHIC cost ~ \$135M
- Coherent electron cooling test fit naturally into the scheme - i.e. coherent electron cooling will be tested in time when it is needed for full-energy, full-10³⁴ cm⁻²sec⁻¹ luminosity eRHIC
- eRHIC future up-grade (if physics justifies additional \$\$) can bring c.m. energy to HERA level with x 1000 of HERA luminosity

Thank you for

Contest to name first MEeIC experiment

Inspired by the physics:
 OompheP (suggested pronunciation: UUMFEP)
 eP-Oomph.....(suggested pronunciation: I P_uumf)

Prize - A bottle of good champagne Send suggestions to vl@bnl.gov

V.N. Litvinenko, ElC Collaboration Meeting, LBNL, 11-13 December, 2008
 V.N. Litvinenko, ElC Collaboration Meeting, LBNL, 11-13 December, 2008