Physics goals of a staged EIC

Tanja Horn (JLab)

EIC collaboration meeting, 13 December 2008

Thomas Jefferson National Accelerator Facility

EIC Physics Objectives

NSAC Long Range Plan 2007

QCD at high gluon densities

- High energy (~ HERA), nuclear targets
- Mostly inclusive / diffractive
- Related to *p*-*p* and ultraperipheral *p*-*A* / *A*-*A* programs at LHC and RHIC

AND

Nucleon structure: spin / flavor / spatial

- High luminosity at lower energy, detector resolution, acceptance, PID
- Exclusive / semi-inclusive / inclusive
- Builds on JLab 12 GeV and RHIC spin

How do we get there?

Top-down staging: start by building a high-energy e-A machine

- Staged upgrades will improve luminosity
- Will we be able to carry out the complete *e-p* program?

OR

Bottom-up staging: adopt a physics driven staging scheme

- Machine will evolve to higher ion energies over time
- Performance can be optimized for various physics challenges
- Different parts of the physics program will be completed at each stage

Starting big: eRHIC stage 1

List of topics was discussed at ECT Trento, July 14-18, 2008:

 $[\rightarrow A. Deshpande]$

- Inclusive and semi-inclusive DIS: *e-p*
- Systematic study of target fragmentation
- DIS with unpolarized electrons and nuclei from H to U

Details being discussed in working groups (e.g., e-A, e-p)

Starting small: medium-energy collider

Unique opportunity for nucleon structure physics

- Substantial part of the EIC spin / GPD / TMD program can be completed in a smaller collider at an early stage
- High luminosity at medium energies (10³³ cm⁻²s⁻¹)
- Symmetric kinematics improve resolution, acceptance, and PID
- Difficult or impossible to do with a high-energy collider

Growing interest in nuclear physics community

• Natural extension of JLab 12 GeV fixed-target program; could get large part of present user community on board

Cost-effective staging path for ELIC $[\rightarrow G. Krafft]$

• Required booster rings will serve as colliders

e-p at medium energies: overview

- Exclusive processes and GPDs
 - DVMP: spin/flavor/spatial quark structure ($Q^2 \sim 10 \text{ GeV}^2$)
 - DVCS: helicity GPDs, spatial quark and gluon imaging
 - − Resonance structure from N \leftrightarrow N^{*} transition GPDs
- Charm as direct probe of gluons
 - J/ ψ , exclusive: spatial distribution of gluons
 - $D \Lambda_c$, open charm (including quasi-real D^o photoproduction for ΔG)
- Semi-inclusive DIS
 - Flavor decomposition: $q \leftrightarrow q, u \leftrightarrow d$, strangeness s, s
 - TMDs: spin-orbit interactions from azimuthal asymmetries, p_T dependence
 - Target fragmentation and fracture functions
- Inclusive DIS
 - ΔG and Δq + Δq from global fits (+JLab 12 GeV, COMPASS)

e-A at medium energies: overview

- Inclusive reactions
 - Neutron structure: spectator tagging in d(e,e'p)X
 - EMC effect
- Coherent nuclear processes
 - Coherent J/ψ: gluonic radius of nucleus
 - Coherent DVCS: matter vs. charge radius
 - ⁴He: spin-0 nucleus, "simplest" target!
 - Coherent meson production: color transparency, QCD dynamics ... much easier than in fixed-target: $|tmin| < R_A^{-2}$
- Quark propagation and hadronization in medium

Exclusive J/Ψ: spatial distribution of gluons

• J/Ψ probes gluon GPDs:

transverse distribution of gluons

- Fundamental characteristic of nucleon
- Input to high-energy p-p collisions (LHC)
- Initial condition for saturation
- Interesting data at small x (HERA, FNAL)
 - How to relate to large-x nucleon structure?
- Limited data at large x (SLAC, Cornell)
 - Exclusivity, *t*-range
- Gluon imaging in the valence region
- Feasible with a luminosity of 10³³

Exclusive meson production: GPDs

- QCD factorization: meson cloud produced in pointlike configuration $r_{\tau} \sim 1/Q$
 - Requires $Q^2 \sim 10 \text{ GeV}^2!$ (cf. HERA)
- Vectors ρ° , ϕ : unpolarized quarks
 - Large cross section (diffractive)
 - σ_L / σ_T separation through decay
- Pseudoscalars π , η , K: polarized quarks
 - $-\Delta u$, Δd , Δs without target polarization
 - $-\sigma_L / \sigma_T$ separation through Rosenbluth
 - Charged pion form factor?
- Quark spin/flavor/spatial distributions through GPDs

These measurements are practically impossible with a high-energy collider

Spin structure: ΔG

- COMPASS data show that A₁ mostly located at x > 0.01
- No benefit in measuring at small x

- A good determination of ΔG can be made from global fits at moderate values of s (<400 GeV²)
- Detailed studies: Sidorov et al.
 - $[\rightarrow$ EIC Hampton meeting talk]

Nuclear modifications: EMC effect

Jefferson Lab

Thomas Jefferson National Accelerator Facility

How high does medium energy go?

• A few examples (electron on ion):

 $s \approx 4 p_e p_{ion}$

- 4 on 250 is like 10 on 100
- 2 on 250 is like 10 on 50
- 2 on 150 is like 10 on 30

IP

- Stage 2 of a medium energy collider (based on 30+ GeV ELIC booster) would already have a considerable coverage in *x* and *Q*².
 - with SC magnets, ion energy can be increased to 200+ GeV in the same tunnel

Inclusive reactions at eRHIC or ELIC

Q² (GeV²)

10 4

10³

10²

EIC

Jlab12

CERN µ-beam experiments

SLAC e-beam experiments

10 -1

10 on 250 (e-p

10⁴

10³

10²

- The low-*x* tails require full EIC •
- Low energy may be advantageous • for F₁ measurements for control of systematic uncertainty

Thomas Jefferson National Accelerator Facility→ J. Seele]

Gluon Saturation

• Large enhancement of Q_s^A over Q_s^p ?

• New physics?

Thomas Jefferson National Accelerator Facility

Summary

A staged eRHIC would focus on

- Inclusive and semi-inclusive (polarized) DIS
- e-A physics with unpolarized electrons and ions ranging from H to U

A medium-energy collider as staging for ELIC would allow

- Completing a major part of the EIC nucleon structure program:
 - spin structure + GPDs and TMDs from polarized DVCS, DVMP, SIDIS, J/ Ψ
- Polarized e-A for: coherent nuclear processes, neutron structure

Inclusive reactions at high energy

