Spin Structure of the Nucleon: Theory

Werner Vogelsang BNL Nuclear Theory EIC workshop, LBL, 12/13/2008

Exploring the nucleon: a fundamental quest

Know what we are made of !

Test our ability to *use* QCD: Asymptotic Freedom Factorization

Explore and Understand QCD: Confinement Lattice Models

Nucleon as tool for discovery: RHIC Heavy Ions, LHC, ...

Outline:

- Nucleon helicity structure
- Transverse-spin phenomena in QCD
- Conclusions

Nucleon helicity structure

$$\Delta q(x) = \frac{1}{4\pi} \int dy^{-} e^{-iy^{-}xP^{+}} \langle P, S | \bar{\psi}_{q}(0, y^{-}, \mathbf{0}_{\perp}) \gamma^{+} \gamma_{5} \psi_{q}(0) | P, S \rangle$$

• DGLAP evolution:

$$\mu^{2} \frac{\mathrm{d}}{\mathrm{d}\mu^{2}} \left(\begin{array}{c} \Delta q(x,\mu^{2}) \\ \Delta g(x,\mu^{2}) \end{array} \right) = \int_{x}^{1} \frac{\mathrm{d}z}{z} \left(\begin{array}{c} \Delta \mathcal{P}_{qq} & \Delta \mathcal{P}_{qg} \\ \Delta \mathcal{P}_{gq} & \Delta \mathcal{P}_{gg} \end{array} \right) \left(\begin{array}{c} \Delta q \\ \Delta g \end{array} \right) \left(\frac{x}{z},\mu^{2} \right)$$

$$\Delta \mathcal{P}_{ij}(z,\alpha_s) = \frac{\alpha_s}{2\pi} \Delta P_{ij}^{(0)}(z) + \left(\frac{\alpha_s}{2\pi}\right)^2 \Delta P_{ij}^{(1)}(z) + \dots$$

"LO" "NLO"

(Ahmed,Ross; Altarelli,Parisi; Mertig,van Neerven; WV)

• NNLO: Moch, Rogal, Vermaseren, Vogt

• give q and g spin contributions to proton spin:

Jaffe, Manohar; Ji, Hoodbhoy; Jaffe, Bashinsky; Brodsky; Chen et al.

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + \Delta G + L_g$$

$$\Delta \Sigma = \int_0^1 dx \Big[\Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s} \Big] (x)$$

$$\Delta G = \int_0^1 dx \, \Delta g(x)$$

• accessible in high energy polarized scattering at large momentum transfer

The probes of nucleon helicity structure :

DIS
$$\Delta \sigma = \sum_{f=q,\bar{q},g} \int dx \,\Delta f(x,Q^2) \,\Delta \hat{\sigma}^f(xP,\alpha_s(Q^2)) + \text{P.C.}$$

pp $\Delta \sigma = \sum_{a,b=q,\bar{q},g} \int dx_a \,\Delta f_a(x_a,p_{\perp}^2) \int dx_b \,\Delta f_b(x_b,p_{\perp}^2) \Delta \hat{\sigma}^{ab}(x_aP,x_bP',\alpha_s(p_{\perp}^2)) + \text{P.C.}$
 $\Delta \hat{\sigma} = \Delta \hat{\sigma}_{\text{LO}} + \alpha_s \Delta \hat{\sigma}_{\text{NLO}} + \dots$

Long history of NLO QCD analyses of helicity parton distributions in DIS:

New: "Global analysis" of all DIS, SIDIS, RHIC data sets DSSV de Florian, Sassot, Stratmann, WV (PRL 101, 2008) (→ tool for EIC studies)

There is some additional information:

$$\Delta \Sigma_q \, \equiv \, \int_0^1 dx \, \left(\Delta q + \Delta \bar{q} \right)(x) \, \propto \, \left\langle P, s \, | \, \bar{\psi}_q \, \gamma^\mu \gamma_5 \, \psi_q \, | \, P, s \, \right\rangle \quad \begin{array}{l} \text{axial} \\ \text{charges} \end{array}$$

use SU(3) to obtain non-singlet combinations from baryon decays: Bjorken; Karliner, Lipkin; Ratcliffe;...

$$\Delta \Sigma_u - \Delta \Sigma_d = g_A = 1.257 \pm \dots$$
$$\Delta \Sigma_u + \Delta \Sigma_d - 2\Delta \Sigma_s = 3F - D = 0.58 \pm 0.03$$
$$\Rightarrow \Delta \Sigma = \Delta \Sigma_u + \Delta \Sigma_d + \Delta \Sigma_s = 3F - D + 3\Delta \Sigma_s$$

• sizable negative strange contribution ?

(likewise for semi-inclusive DIS)

What's the emerging picture ?

• best determined: $\Delta u + \Delta \bar{u}$, $\Delta d + \Delta \bar{d}$

Comparison with: DNS de Florian,Navarro,Sassot GRSV Glück, Reya, Stratmann, WV

Similar results: Leader, Stamenov, Sidorov Blümlein, Böttcher; & HERMES Hirai, Kumano, Saito (AAC) COMPASS

$$\Delta u/u \to 1$$

 $\Delta d/d < 0$

large-x region :

• on the lattice :

LHPC Collab., P. Hägler et al.

disconnected diagrams not yet included

• gives confidence in small-x extrapolations

• large-N_c, chiral quark models, meson cloud

Thomas, Signal, Cao; Holtmann, Speth, Fässler; Diakonov, Polyakov, Weiss; Schäfer, Fries; Kumano; Wakamatsu; Bourrely, Soffer ...

$$\int_{0.001}^{1} dx \,\Delta s(x) \,=\, -0.006 \pm 0.01 \qquad (\Delta \chi^2 = 1)$$

 $\int_0^1 dx \,\Delta s(x) = -0.057 \pm ? \qquad \text{using F,D and SU(3)}$

• perhaps: $\Delta s \approx -\Delta \bar{s}$?

• total quark and anti-quark spin contribution :

$$\int_{0.001}^{1} dx \Delta \Sigma = 0.366 \pm 0.016 \qquad (\Delta \chi^2 = 1)$$

$$\int_0^1 dx \Delta \Sigma \,=\, 0.242 \pm ?$$

- in any case, $\Delta\Sigma\ll 1$

PHENIX

- there could still be significant contribution to proton spin
- gluons paired to spin-0?

Kharzeev, Levin, Tuchin

HERMES, COMPASS:

(not yet included in DSSV)

Future avenues: some examples

Quark/anti-quark polarizations:

- extensive studies at Jlab-12: (semi-)inclusive, large-x
- W program at RHIC:

• EIC: (SI)DIS at higher Q², Parity-violating str. fcts. Generally: smaller x and/or higher Q²

Gluon polarization

RHIC:

- improve statistics for presently accessible x range
- detailed scans of $\Delta g(x)$
- extend to lower x by studies of 2-particle correlations, and by 500-GeV running

Transverse-spin phenomena

 $A_N \sim \mathcal{I}m(M_+M_-^*)$

 $ec{S}_{\perp} \cdot \left(ec{P} \, imes \, ec{p}_{\perp}^{\, \pi}
ight)$

two requirements:

nucleon helicity flip and phase

Also: BRAHMS, PHENIX

 $\mathbf{e}\,\mathbf{p}^{\uparrow}
ightarrow \mathbf{e}\,\pi\,\mathbf{X}$

• simple parton model:

$$A_N$$
 expected as $rac{m_q}{p_\perp}lpha_s\ll 1$
Kane, Pumplin, Repko '78

- SSA for single-inclusive process (pp $\rightarrow \pi X$) * a single large scale (p_{T})
 - * power-suppressed $1/p_{T}$ ("twist-3")
 - * collinear factorization

Efremov, Teryaev; Qiu, Sterman

• SSA with two scales: $\mathbf{Q} \gg \mathbf{q}_{\mathrm{T}} \sim \Lambda_{\mathrm{QCD}}$ (SIDIS A_N)

* not suppressed as 1/Q

* Transverse-momentum dependent (TMD) factorization (Sivers, Collins fcts. & other)

> Brodsky, Hwang, Schmidt; Collins; Belitsky, Ji, Yuan; Ji, Ma, Yuan; Boer, Mulders, Pijlman

 $T_F(x_1, x_2) \sim \mathrm{FT}_{x_1, x_2} \Big(\langle P, S_\perp | \bar{\psi} \gamma^+ F_\sigma^+ \psi | P, S_\perp \rangle \Big)$

- hel. ok because of qgq
- phase in hard scattering

Efremov, Teryaev; Qiu, Sterman; Koike et al.; Kouvaris, Qiu, WV, Yuan; Yuan, Zhou; Kang, Qiu; ...

$$egin{split} f_{1T}^{\perp}(x,k_{\perp}) &\sim \mathrm{FT}_{x,k_{\perp}} \Big(\langle P,S_{\perp} | ar{\psi} \, \gamma^{+} \mathcal{U} \, \psi | P,S_{\perp}
angle \Big) \ \mathcal{U} &= \mathcal{P} \exp \left(- ig \int_{0}^{z} d\xi^{\mu} \, A_{\mu}(\xi)
ight) \end{split}$$

- phase from gauge link
- hel. flip because of OAM

Sivers; Brodsky, Hwang, Schmidt; Collins; Belitsky, Ji, Yuan; Bomhof; Mulders, Pijlman; Burkardt, Schnell

Mechanisms are closely related:

- Boer, Mulders, Pijlman $T_F(x,x) \sim \int d^2 k_\perp \, k_\perp^2 \, f_{1T}^\perp(x,k_\perp)$
- Ji,Qiu,WV,Yuan; Koike,WV,Yuan; Bacchetta,Boer,Diehl,Mulders

• testable QCD predictions for q_{\perp} dependence

A lot of recent progress

Twist-3 nucleon matrix elements:

- Q² evolution
- NLO correction to SSA in Drell-Yan
- studies of three-gluon correlations

Yuan,Zhou Kang,Qiu Kang,Qiu,WV,Yuan

Kang, Qiu

WV, Yuan

Zhou, Yuan, Liang

Sivers function:

 gauge link has profound implications: Brodsky, Hwang, Schmidt; Collins; Belitsky, Ji, Yuan; Boer, Mulders, Pijlman

tests many of our concepts for the description of hard hadronic processes extension to general QCD hard scattering:

 S_T

 $\delta \phi$

 k^{\perp}

Bomhof, Pijlman, Mulders Boer, Bacchetta Qiu, Yuan, WV Collins, Qiu

qq'→qq'

Non-universality !

Bomhof, Mulders, Pijlman; Collins, Qiu; Yuan, WV

• ramifications also for spin-averaged case

 phenomenology of Sivers functions:

$$\int d^2k_\perp \, {k_\perp \over 4m_p} \, f_q^{
m Sivers}(x,k_\perp)$$

Anselmino, Boglione, D'Alesio, Kotzinian, Murgia, Prokudin, Türk

(Goeke et al.; Yuan, WV)

• connection to GPDs / spatial distributions (within models) Burkardt; Diehl, Hägler; Brodsky, Gardner; Meißner, Metz,Goeke

$$\int d^{2}\mathbf{k}_{\perp}k_{\perp}(\mathbf{k}_{\perp}\times\mathbf{s}_{\perp}) f^{\text{Sivers}}(x,k_{\perp}) \sim \int d^{2}\mathbf{b}_{\perp} \mathcal{I}(b_{\perp}) \left(\mathbf{b}_{\perp}\times\mathbf{s}_{\perp}\right) \frac{\partial}{\partial b_{\perp}^{2}} \mathcal{E}(x,b_{\perp}^{2})$$
"Lensing function"

• Suggests: spatial deformation as origin of asym.

Burkardt; Diehl, Hägler

• expected signs of $f_{u,d}^{
m Sivers}$ consistent with phenomenology

• New data provide new puzzles:

COMPASS

- RHIC & HERMES, COMPASS closing in on Δg : small in accessible x-region. Small overall ?
- flavor asymmetry $\Delta \bar{u} \Delta \bar{d} > 0$? Strangeness puzzle?
- new insights into QCD from single-spin asymmetries
- even after RHIC, Jlab-12 many of the current questions will not have been answered *definitively*