The Generalised Parton Distributions - Experiment

Andrzej Sandacz

Soltan Institute for Nuclear Studies, Warsaw

- Generalised Parton Distributions
- Selected results on DVCS
- Selected results on HEMP
- Perspectives for GPDs prior to next e-h colliders
- GPDs at EIC

Structure of the Nucleon

form factors

location of partons in nucleon

parton distributions

longitudinal momentum fraction x

generalised parton distributions (GPDs)

transverse location $\boldsymbol{b}_{\!L}$ and longitudinal momentum fraction \boldsymbol{x}

embody 3D picture of hadrons

Generalized Parton Distributions and DVCS

Factorisation: Q² large, -t<1 GeV²

4 Generalised Parton Distributions : H, E, \tilde{H} , \tilde{E} depending on 3 variables: x, ζ , t for each quark flavour and for gluons

for DVCS gluons contribute at higher orders in α_s

'Holy Grails' of the GPD quest

GPD= a 3-dimensional picture of the partonic nucleon structure or spatial parton distribution in the transverse plane

$$H(x, \xi=0, t) \rightarrow H(x, r_{x,y})$$

probability interpretation Burkardt

• Contribution to the nucleon spin puzzle

E related to the angular momentum

$$2J_{q} = \int x (H^{q}(x,\xi,0) + E^{q}(x,\xi,0)) dx$$

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + \langle L_{z}^{q} \rangle + \langle L_{z}^{q} \rangle$$

Observables and their relationship to GPDs

DVCS – BSA from CLAS

[PRL 100, 162002 (2008)]

The most extensive set of DVCS data up to date

Results from JLAB Hall A E00-100

[PRL97, 262002 (2006)]

Measured polarised and unpolarised cross sections

Combined analysis of BC and TTS asymmetries from HERMES transversly polarised p target

- DD model for proton from M.Vanderhaeghen et al (PRD 60 (1999) 094017)
- data taking years 2002-2005 with transverse target

HERMES, JHEP 06 (2008) 066

Regge model without D-term favoured by the *t*-dependence of the BCA

Transverse Target Spin Asymmetry A_{UT}

$$\begin{aligned} A_{UT}(\phi,\phi_{S}) &= \frac{1}{P_{T}} \cdot \frac{d\sigma(P^{\uparrow},\phi,\phi_{S}) - d\sigma(P^{\downarrow},\phi,\phi_{S})}{d\sigma(P^{\uparrow},\phi,\phi_{S}) + d\sigma(P^{\downarrow},\phi,\phi_{S})} \\ &\propto \quad \mathrm{Im}[F_{2}\mathcal{H} - F_{1}\mathcal{E}]\sin(\phi - \phi_{S})\cos\phi + \mathrm{Im}[F_{2}\mathcal{H} - F_{1}\mathcal{E}]\sin(\phi - \phi_{S}) \\ &+ \quad \mathrm{Im}[\mathcal{H}\mathcal{E}^{*} - \mathcal{E}\mathcal{H}^{*} + \xi\widetilde{\mathcal{E}}\widetilde{\mathcal{H}}^{*} - \widetilde{\mathcal{H}}\xi\widetilde{\mathcal{E}}^{*}]\sin(\phi - \phi_{S}) + \ldots \end{aligned}$$

 $sin(\phi - \phi_S) \cos \phi$

for proton sensitive to J_u (not to J_d) => allows model dependent constraints

 J_u

The GPDs at small x

unpolarised cross section σ_{DVCS} on protons averaged over φ H1 and ZEUS at small x_{B} (< 0.01) $\sigma_{\text{DVCS}}^{unp} \propto 4(\mathcal{HH}^* + \mathcal{HH}^*) - 2\frac{t}{4M^2}\mathcal{EE}^* \longrightarrow \text{H}^{\text{sea}}, \text{H}^{\text{g}}$

 $\ensuremath{\mathsf{GPDs}}\xspace H$ related to the 3D picture of the unpolarised proton

t-distributions for DVCS at HERA

Measurement of $d\sigma/dt$ [DVCS] => spatial distribution of sea and gluons

(a)

$$(x, \mathbf{r}_{\perp}, Q^{2}) = \int \frac{d^{2}\Delta_{\perp}}{(2\pi)^{2}} e^{-i\mathbf{r}_{\perp}\Delta_{\perp}} GPD_{q}(x, Q^{2}, t = -\Delta_{\perp}^{2})$$

$$<\mathbf{r}_{\mathsf{T}}^{2} > = 4 \ d/dt[GPD(x,t)] / GPD(x,0)$$

$$= 2 \ d/dt[\sigma(t)] / \sigma(t=0)$$
Sea & glue
$$\underbrace{v_{\mathsf{T}}^{\mathsf{N}} \cdot v_{\mathsf{T}}^{\mathsf{N}}}_{\mathsf{Ingitudinal}} \underbrace{v_{\mathsf{T}}^{\mathsf{N}} \cdot v_{\mathsf{T}}^{\mathsf{N}}}_{\mathsf{Ingitudinal}} \underbrace{v_{\mathsf{N}}^{\mathsf{N}} \cdot v_{\mathsf{T}}^{\mathsf{N}}}_{\mathsf{N}} \underbrace{v_{\mathsf{N}}^{\mathsf{N}} \cdot v_{\mathsf{T}}^{\mathsf{N}}}_{\mathsf{N}} \underbrace{v_{\mathsf{N}}^{\mathsf{N}} \cdot v_{\mathsf{N}}^{\mathsf{N}}}_{\mathsf{N}} \underbrace{v_{\mathsf{N}}^{\mathsf{N}} \underbrace{v_{\mathsf{N}}^{\mathsf{N}} \cdot v_{\mathsf{N}}^{\mathsf{N}}}_{\mathsf{N}} \underbrace{v_{\mathsf{N}}^{\mathsf{N}} \cdot v_{\mathsf{N}}^{\mathsf{N}}}_{\mathsf{N}} \underbrace{v_{\mathsf{N}}^{\mathsf{N}} \cdot v_{\mathsf{N}}^{\mathsf{N}}}_{\mathsf{N}} \underbrace{v_{\mathsf{N}}^{\mathsf{N}} \underbrace{v_{\mathsf{N}}^{\mathsf{N}} \cdot v_{\mathsf{N}}^{\mathsf{N}}}_{\mathsf{N}} \underbrace{v_{\mathsf{N}}^{\mathsf{N}} \underbrace{v_{\mathsf{N}}^{\mathsf{N}} \cdot v_{\mathsf{N}}}}_{\mathsf{N}} \underbrace{v_{\mathsf{N}}^{\mathsf{N}} \cdot v_{\mathsf{N}}^{\mathsf{N}}}_{\mathsf{N}} \underbrace{v_{\mathsf{N}}^{\mathsf{N}} \cdot v_{\mathsf{N}}^{\mathsf{N}}} \underbrace{v_{\mathsf{N}}^{\mathsf{N}} \underbrace{v_{\mathsf{N}}^{\mathsf{N}}} \underbrace{v_{\mathsf{N}}^{\mathsf{N}} \underbrace{$$

$$(r_T^2 >]^{1/2} = 0.65 \pm 0.02 \text{ fm}$$

(b)

x < 0.1

Probing x-t correlation

GPDs and Hard Exclusive Meson Production

E

Ĩ

4 Generalised Parton Distributions (GPDs) for each quark flavour and for gluons

 \succ factorisation proven only for $\sigma_{\rm I}$ $\sigma_{\rm T}$ suppressed of by $1/Q^2$ necessary to extract longitudinal contribution

to observables (σ_1 , ...)

 \succ allows separation (H,E) \leftrightarrow ($\widetilde{H},\widetilde{E}$) and wrt quark flavours Η

Ĥ

Vector mesons (ρ, ω, ϕ)

Pseudoscalar mesons (π, η)

flip nucleon helicity

- conserve
- \succ quarks and gluons enter at the same order of α_s
- > at $Q^2 \approx$ few GeV² power corrections/higher order pQCD terms are essential

 \succ wave function of meson (DA Φ) additional input

Flavour sensitivity of HEMP on the proton

π^{0}	$2\Delta u + \Delta d$
η	$2\Delta u - \Delta d$
$ ho^0$	2u+d, 9g/4
ω	2u–d, 3 <mark>g</mark> /4
¢	s, g
$ ho^+$	u–d
J/ψ	g

 $e p \rightarrow e n \pi^+$

- L/T separation at HERMES not possible
- σ_T expected to be supressed as $1/Q^2$

dominance of σ_L at large Q^2 supported by Regge model (Laget 2005)

- at leading twist σ_L sensitive to GPDs \tilde{H} and \tilde{E}
- at small |t'| E dominates as it contains *t*-channel pion-pole

[PLB659(2008)]

- \blacktriangleright data support magnitude of the power corrections (k_t and soft overlap)
- Regge calculations provides good description of the magnitude of σ_{tot} and of t' and Q^2 dependences

- \succ steep energy dependence in presence of hard scale Q^2 and/or M^2
- b-slopes decrease with increasing scale approaching a limit ≈ 5 GeV⁻² at large scales

 \succ approximate 'universality' of energy dependence and b-slopes at small x

Results on $R = \sigma_{I} / \sigma_{T}$ for ρ^{0} production

ZEUS

the same size of the longitudinal and transverse γ^* involved in hard ρ^0 production

i.e. contribution of large qqbar fluctuations of transverse γ^* suppressed

Comparison to a GPD model

Present and future of GPD experiments

Perspectives for GPDs @ JLAB

> DVCS with longitudinally polarized target $\vec{p}(\vec{e}, e'p\gamma)$ Target spin asymmetry Double target-beam spin asymmetry > DVCS with unpolarized target $p(\vec{e}, e'p\gamma)$ Doubling present statistics (CLAS) @ Various beam energies --> separation of DVCS² and BH DVCS (Hall A) > DVCS on a neutron target $n(\vec{e}, e'\gamma)n$ Sensitivity to E GPD > Meson production $(\pi^0, \eta, \omega, \rho...)$ > Double DVCS $ep \rightarrow ep\gamma^* \rightarrow ep\mu^+\mu^-$ > DVCS on a transversaly polarised proton target High sensitivity to J. Relies on success of R&D of HDice target

Development of neutron detection capabilities in the central detector (Hall B) and polarized neutron targets sustaining high beam currents (Hall A)

GPDs @ COMPASS

➤ The GPDs program is part of the COMPASS Phase II (2010-2015) proposal to be submitted to CERN in 2009.

> The first phase of this program requires a 4 m long recoil proton detector (**RPD**) together with a 2.5 m long LH_2 target. An additional electromagnetic calorimeter will enlarge the kinematical coverage at large x_B .

The GPDs prior to birth of new electron-hadron colliders

H1, ZEUS, HERMES, JLab 6 GeV are providing the first results significant increase of statistics expected after full data sets analysed

The energy upgrade of the CEBAF accelerator will allow access to the high x_B region which requires large luminosity.

The DVCS project at COMPASS will explore intermediate x_B (0.01-0.10) with a reasonable overlap with the JLab kinematic domain. Precision of DVCS unpolarized cross sections at eRHIC

HE setup: $e^{+/-}$ (10 GeV) + p (250 GeV) $\mathcal{L} = 4.4 \cdot 10^{32} \text{ cm}^{-2}\text{s}^{-1}$ 38 pb^{-1/dayLE setup: $e^{+/-}$ (5 GeV) + p (50 GeV) $\mathcal{L} = 1.5 \cdot 10^{32} \text{ cm}^{-2}\text{s}^{-1}$ 13 pb^{-1/day

For one out of 6 Q^2 intervals (8 < Q^2 < 15 GeV²)

[A.S. @ Workshop on Hard Exclusive Processes, Univ. of Maryland, October 2006]

EIC measurements of cross section will provide stronger constraints on GPD models

Towards 3D mapping of parton structure of the nucleon at EIC

simultaneous data in several (6) Q² bins

Sufficient luminosity to do triple-differential measurements in x, Q², t at EIC!

Hard Exclusive Meson Production at EIC

> 'diffractive' channels $J/\psi, \rho^0, \phi...$ sensitivity to gluons

transverse gluon (and sea quarks) imaging

> 'non-diffractive' channels π , η , K, ρ^+ ...

probe spin/flavour/charge non-singlet GPD's

by model-independent comparison of channels

$\pi^{0/\eta}$	$\Delta u/\Delta d$, meson wave functions
ρ^+/K^*	SU(3) symmetry of quark GPD's
$\pi^{0/\pi^{+}}$	role of the pion pole in GPD

experimentally more challenging than 'diffractive' channels

smaller cross sections, L/T separation for pseudo-scalar mesons

> advantage of EIC - high Q^2 ; power corrections less important

Rates and coverage in different Event Topologies for $p \rightarrow e n \pi^+$ at ELIC

- Neutron acceptance limits the t-coverage
- The missing mass method gives full t-coverage for x<0.2

Assume dp/p=1% (p_{π} <5 GeV)

[T. Horn, A. Bruell, G. Hubner, C. Weiss @ EIC Collaboration Meeting, Hampton, May 2008]

Requirements for exclusive processes at an EIC

small cross sections a challenge Iarge luminosity
 effective suppression of non-exclusive background

Hermeticity : wide kinematical range and suppression of non-exclusive bkg.
 angular acceptance of Central Detector strongly affects small *x* region

 $2^{\circ} \div 178^{\circ}$ ('improved eRHIC ZDR')

- importance of coverage of low E_{γ} region (both π^{0} bkg. and accept. at small W) $E_{\gamma} > 0.5 \text{ GeV} (?)$
- Leading Proton Detector suppression of bkg. from proton diff. dissociation

acceptance and *t*-range strongly dependent on

beam-line design and beam tune (β^*)

Particle Identification :

required - $e/\mu/h$ separation

with Calorimetry and Muon Detection

Summary for DVCS and HEPM at EIC

♦ Wide kinematical range, overlap with HERA and COMPASS
 1.5 ⋅ 10⁻⁴ < x_B < 0.15 - sensitivity to gluons and sea quarks
 1 < Q² < 50 GeV² - sensitivity to QCD evolution

- Significant improvement of precision wrt HERA
- Sufficient luminosity to do tripple-differential measurements in x_{B} , Q^{2} , t

Variable beam energy settings

will provide kinematical overlap with existing data separation of |DVCS|² and BH-DVCS terms and L/T separation for pseudoscalar meson production

Full exploratory potential for DVCS at amplitude level

with e⁺ and e⁻ polarised beams as well as with longitudinaly and transversely polarized protons