Photoproduction in ultra-peripheral ion collisions and at the EIC

Spencer Klein, LBNL/UC Berkeley

Photoproduction: fixed target, eA and AA RHIC & Tevatron results – $e^+e^-\rho$, ρ' , and the J/ ψ High energy $\gamma\gamma/\gamma p$ at the LHC EIC prospects & comparison with other methods

Fixed Target photoproduction

- 50+ year history
- Beams from MeV to ~ 400 GeV
 - u From Coulomb excitation to $\sqrt{s_{\gamma n}}$ ~30 GeV
- Large Data samples
- Variety of nuclear targets
 - u Very high effective luminosities
- Fully real photons
- Some Physics Foci
 - u Vector Meson Dominance

Photoproduction:ep @ HERA

- Higher energy than fixed target
 u Similar topics
- Also, γγ reactions
- Some 'low energy' reactions
 - u Search for photon Odderon --> π^0 or $f_2(1270)$
 - F Odderon is spin 1, '3-gluon' counterpart of the Pomeron
 - Fundamental in QCD
 - F Production rate
 - γγ and γO channels interfere
 - Angular distributions

H1 Collab, Phys.Lett.B544, 35 (2002)

Photons from Hadrons

- Relativistic hadrons carry strong electromagnetic fields
 - Weizsacker-Wiliams: a field of almost-real photons
 - F Virtuality $Q^2 < (h/R_A)^2$
 - Significant for e⁺e⁻ production, and (maybe) with proton beams
- Photon $E_{max} \sim \gamma h/R_A$
 - u 3 GeV with gold at RHIC
 - u 80 GeV with Lead at the LHC
 - u ~10%+ of proton energy at both machines
- Photon flux ~ Z^2
 - u Higher intensity with heavy ions
 - F Important for considering multiple interactions between a single ion pair
 - RHIC & LHC have higher luminosities for light ions --> often better overall rates
 - "Optimum" ion depends on the problem

Coupling ~ form factor

Photonuclear Interactions

- Photon coupling $Z^2\alpha \sim 0.6$ for heavy ions
 - Multi-photon reactions common
- γ-gluon/Pomeron/meson interactions
- γ-Pomeron/meson can be coherent
 - u Exclusive final states
 - Coupling ~ A^2 (bulk) $A^{4/3}$ (surface)
 - Large cross-sections for vector meson production
- Require b > 2R_A
 - u no hadronic interactions
 - u ~ 20-60 fermi at RHIC
- Cross sections are huge
 - $\begin{array}{r} \textbf{J} \quad \textbf{5 barns for coh} \textbf{erent } \rho^{\textbf{0}} \text{ production with lead at the } \\ \textbf{LHC} \end{array}$

Coupling ~ form factor

$\gamma\gamma$ interactions

Rate $\sim \sigma \sim Z^4$

- Rates to produce hadrons are much smaller than for photoproduction of vector mesons
- Prolific production of e⁺e⁻ pairs
 - u σ = 200,000 barns with lead at the LHC
 - QED process --> proposed as luminosity ; monitor.
- $_{\rm n}$ W_{max} ~ 2 k_{max}
 - u 6 GeV with gold at RHIC

γγ Luminosity

Unique Possibilities with ion-ion collisions

- Symmetric initial state
 - u Quantum interference
- Highly charged photon emitters
 - Multi-photon interactions
 - F Impact parameter tagging
- Ion interactions
 - Pair production with capture

Strong Coupling/ Multiple Interactions

- $Z^2\alpha \sim 0.6$ with gold/lead
 - u 'Extra' photons are cheap

- Higher order diagrams could be important
- Multi-photon reactions are important
 - u They factorize
- Mutual Coulomb excitation of colliding nuclei is a useful tag
 - u Simple experimental trigger
 - Selects events with small impact parameters

$$\sigma = \int d^2 b P_{2EXC}(b) P_{\rho^0}(b)$$

e⁺e⁻ production w/ STAR & CDF

- With Coulomb excitation in 200 GeV gold-on-gold collisions
 - u STAR finds 52 events
 - F M_{ee} > 140 MeV/c², |Y_{ee}|< 1
 - Highest order corrections needed to fit data
 - F Lowest order σ is 30% higher in STAR acceptance
 - Equivalent photon method fails miserably for pair p_T spectrum
 - Photon virtuality is important

CDF, PRL 98,112001 (2007)

STAR - $\rho^{\rm 0}$ Photoproduction

Coherent production events
 u p_T < ~ 150 MeV/c

n

Entries (arb. units) 0009 0000 0000 0000

4000

2000

M_{$\pi\pi$} fit to ρ^0 + direct $\pi^+\pi^-$ spectrum

nv. Mass (GeV/c²

- u Relativistic Breit-Wigner w/ phase space
- u ρ^0 :direct π⁺π⁻ ratio same as γp @ HERA

Exclusive o^0 and with mutual Coulomb excitation Mass spectra for coherent ($p_T < 150$ MeV/c) production

> 11 300 H

> > 250

Entries 150

100

CHART AND

Inv. Mass (GeV/c²)

0.9

0.8

ρ⁰ ρ⁰:ππ interference Gray -background

STAR, Phys. Rev. C77, 34910 (2008)

Exclusive $\rho^0 = \rho^0 + Mutual Coulomb Excitation$

ρ^{0} rapidity distribution

- ρ⁰ w/ mutual Coulomb excitation
- Photon energy
 - u $k = M_y/2 \exp(y)$
 - u $k = M_v/2 \exp(y)$ $(f) = \frac{220}{200}$ u2-fold directional ambiguity leads $(f) = \frac{220}{200}$ to symmetric distributions
- Cross-section depends on σ_{aa-N} , n which depends on the hadronic model
 - u Saturation models of Goncalves & Machado is ruled out

STAR, Phys. Rev. C77, 34910 (2008)

$\rho^{\rm 0}~p_{\rm T}$ spectra

- Coherent + Incoherent form factors
 u Fit to dual exponential
- Incoherent production
 - u $b_N = 8.8 \pm 1.0 \text{ GeV}^{-2}$
 - F nucleon form factor
- Coherent production
 - u $b_{Au} = 388.4 \pm 24.8 \text{ GeV}^{-2}$
 - $b_{Au} \sim R_A^2$
 - Data sensitive to R_A
 - F Measure hadronic radius of gold
 - 3% statistical uncertainty
 - Significant theoretical corrections/ uncertainty
- σ σ (incoh)/ σ (coh) ~ 0.29 ±0.03

$$\frac{d\sigma}{dt} = a * \exp(-b_{Au} * t) + c * \exp(-b_N * t)$$

STAR, Phys. Rev. C77, 34910 (2008)

ρ^0 at small p_T - interference 2 indistinguishable possibilities u Interference!! Data (w/ fit) 60 No dipole moment, so Noint Int u no dipole radiation 40 Background $\rho, \omega, \phi, J/\psi$ are $J^{PC} = 1^{--}$ 20 u $\sigma \sim |A_1 - A_2 e^{ip \cdot b}|^2$ for pp, AuAu... TAR b is impact parameter 0 'n 0.002 0.006 0.008 0.004 0.0 $\sigma \sim |A_1 + A_2 e^{ip \cdot b}|^2$ for pbarp $t (GeV^2) = p_T^2$ Production suppressed for $p_T < h/$

p_T < 30 MeV/c for ρ⁰ + Mut. Coul. Exc.
 STAR measures this dip at 87 ±5 (stat.) ±8 (syst.)% of the expected level

n

n

n

Interferometry with short-lived particles

- n ρ^0 have $c\tau \sim 1$ fm <<
 - Decay points are separated in space-time
 F no interference
 - u **OR**
 - F the wave functions retain amplitudes for all possible decays, long after the decay occurs
- Non-local wave function
 - u **non-factorizable**: $\Psi_{\pi^+ \pi^-} \neq \Psi_{\pi^+} \Psi_{\pi^-}$
- We measure π momenta. Could instead have measured the π positions shortly after

(transverse view)

SK, J. Nystrand., Phys. Lett. A308, 323 (2003).

Photoproduction of $\pi\pi\pi\pi$

- Expected to be largely through a radially excited ρ u $\rho(1450)$ and/or $\rho(1700)$
- Peak at low p_T from coherent enhancement
- Studies of resonant substructure are in progress

B. Grube, Wkshp. on HE Photon Collisions at the LHC

J/ψ photoproduction at RHIC

- e⁺e⁻ pair + 1 nucleus breakup
 - Nuclear breakup needed for trigger
 - u J/ ψ + continuum $\gamma\gamma$ --> e⁺e⁻
 - u ~ 12 events in peak
- Cross sections for both J/ψ and continuum e⁺e⁺ ~ as expected

\mbox{J}/ψ photoproduction at the Tevatron

- CDF selects exclusive J/ψ photoproduction is sensitive to gluon structure of nuclei u σ ~ $[g(x,M_V^2/4)]^2$
- 334 exclusive $\mu^+\mu^-$ signal events.
 - "Background" from double Pomeron production
 - F $\chi_c \rightarrow \gamma J/\psi$
 - u <mark>Some</mark> ψ'
- Cross section determination in

J. Pinfold, Wkshp. on HE Photon Collisions at the LHC; M. Albrow, arXiv: 0812.0612

UPCs at the LHC

- CMS, ALICE and ATLAS plan programs
- "Yellow Book" gives physics case
 K. Hencken et al., Phys. Rept. 458, 1 (2008).
- Gluon structure Functions at low-x
 Including saturation tests
- The 'black disc' regime of QCD
- Search for exotica/new physics
 - u $\gamma\gamma$ --> Higgs, Magnetic monoples, etc.

Structure Functions at the LHC

- Many photoproduction reactions probe structure functions
 - $u \gamma \rightarrow q\overline{q}$; the quarks interact with target gluons
 - u $Q^2 \sim (M_{\text{final state}}/2)^2$
 - u x ~ 10^{-4} at midrapidity
 - u x ~ 10^{-6} in forward regions
- n J/ψ , ψ ', Y states
- Open charm/bottom/top?
- Dijets
- The twofold ambiguity can be

These techniques also apply at EIC, but the x,Q² range is limited

J/ψ photoproduction

- n $\sigma \sim g(x,Q^2)^2$
 - u x ~ few 10⁻⁴ for J/ ψ @ the LHC
 - u x ~ few 10⁻² for J/ ψ @ RHIC
 - u $Q^2 \sim M_v^2/4$
- Coherent production
 u p_T < h/R_A
- High rates
 - u 3.2 Hz production with Pb
- Detection is easy

M. Strikman, F. Strikman and M. Zhalov, PL B540, 220 (2002)

Dijets

- With calorimetery to | y|<3, probe down to x~10⁻⁴ in 1 month
- Use standard jet triggers

M. Strikman, R. Vogt and S. White, PRL86, 082001 (2006)

LHC – Plans & Issues

- J/ψ,ψ', Y --> leptons is relatively easy
 u CMS, ALICE, ATLAS are pursuing
- Di-jets
 - u ATLAS is pursuing
- n e⁺e⁻ pairs
 - u Interest by ALICE
 - F Untriggered?
- Triggering is problematic
 - ZDC coincidences might help with backgrounds

Bound Free Pair Production

- $A + A --> A + Ae^- + e^+$
 - u 1e⁻ atom has lower Z/A
 - F Less bending in dipoles
 - u Momentum ~ unchanged --> beam
- σ ~ 280 barns w/ lead at the LHC
 - u 280,000 ions/s at L = 10²⁷/cm²/s
 F 28 watts!
 - Hits beampipe ~ 136 m from the IP
 - F Enough energy to quench superconducting magnets?
- Limits LHC luminosity w/ heavy ions
- Observed with copper beams at RHIC

F σ ~ 200 mb

SK, NIM **A459**, 51 (2001); R. Bruce et al. PRL **99**, 144801 (2007)

EIC vs. UPCs: Comparison plot

RHIC: AuAu 10²⁶/cm²/s

LHC: AuAu 10²⁷/cm²/s

eRHIC: eAu Luminosity circa 2003

S. N. White, 2003

Theory faces reality

- The luminosities are huge, but what can a 'real' experiment actually measure?
 - u Triggers
 - u Backgrounds
 - u Detection of scattered hadrons
 - F Roman pots for p or d?
 - Also relevant for ep @ EIC
 - F Otherwise, kinematics are less constrained
 - CMS and ATLAS have limited capabilities for low
 p_T particles & ALICE has limited trigger
 capabilities for low multiplicity interactions.

"UPC-ish" Odderon searches that could be studied at the EIC

- Odderon ==Spin-1, 3-gluon counterpart of the Pomeron
 - u Fundamental in QCD
- Pomeron + Odderon --> J/ψ
 - u Different p_T spectrum from γP
- $\gamma \gamma + \gamma Pomeron + \gamma Odderon --> π^+π^$
 - u γP through ρ^0 intermediary, direct $\pi\pi$ pairs
 - u $\gamma\gamma$, γ O through f₂(1270) intermediary
 - u γP has different final state spin/parity from $\gamma \gamma$, γO
 - F In ep/eA, forward backward asymmetry

$$\sum_{\lambda=+,-} \int \cos\theta \, d\sigma(s, Q^2, t, m_{2\pi}^2, y, \alpha, \theta, \lambda)$$

$$\sum_{\lambda=+,-}\int d\sigma(s,Q^2,t,m^2_{2\pi},y,\alpha,\theta,\lambda)$$

Hagler et al, hep-ph/0310068

X(1750)-->K⁺K⁻

- Diffractively photoproduced?
 u seen by FOCUS
- p_T < 0.15 GeV/c, compatible
 w/ coherent γP or γγ
 production
 - Angular analysis shows probably J^{PC}=2⁺⁺
 - **F** γγ production?
 - u Too heavy to be φ(1680)
- Upper limit on UPC production in STAR masters thesis
- What is it?

 $Mass(K^{+}K^{-}) (GeV/c^{2})$

Conclusions

- Photonic reactions can be studied in many venues.
- The LHC will produce the highest energy γp/γA and γγ collisions in the world.
 - u These collisions occur at very high luminosity.
- The study of many of these reactions is limited by the detector triggers, limited acceptance, and/or inability to observe the scattered nuclei.
- Some photonic reactions are unique to heavy-ion colliders
 - u Interference between production sites