Single Transverse-Spin Asymmetry in Semi-inclusive D-meson Production

Jianwei Qiu

Iowa State University

Based on work done with Zhong-Bo Kang, PRD, 2008

EIC Collaboration meeting - ep physics working group Lawrence Berkeley National Laboratory, CA, December 11-13, 2008

The Question

□ How to probe the hadron structure beyond the PDFs? beyond the probability distributions?

$$\sigma(Q,s_T) = H_0 \otimes f_2 \otimes f_2 + (1/Q) H_1 \otimes f_2 \otimes f_3 + \mathcal{O}(1/Q^2)$$

$$\uparrow$$
Too large to compete! Three-parton correlation

☐ Idea:

Take a difference of two cross sections, whose leading power terms are canceled

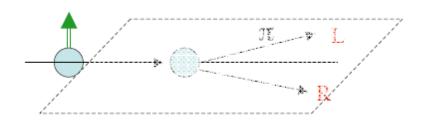
$$\Delta\sigma(Q, s_T) \equiv [\sigma(Q, s_T) - \sigma(Q, -s_T)]/2$$

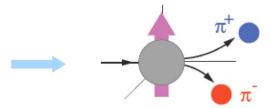
$$= (1/Q)H_1(Q/\mu_F, \alpha_s) \otimes f_2(\mu_F) \otimes f_3(\mu_F) + \mathcal{O}(1/Q^2)$$

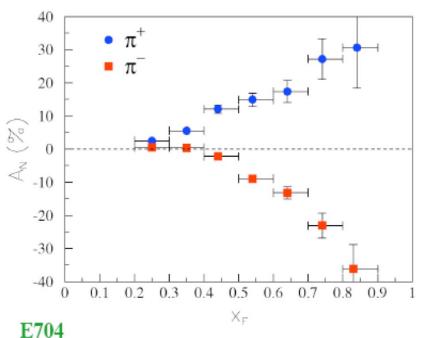
SSA in hadronic collisions

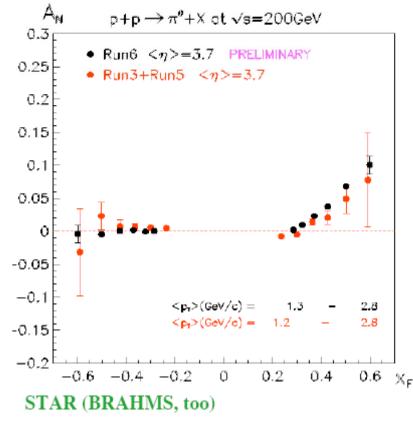
□ Hadronic $p \uparrow + p \rightarrow \pi(l)X$:

$$A_{N} = \frac{1}{P_{\text{beam}}} \frac{N_{\text{left}}^{\pi} - N_{\text{right}}^{\pi}}{N_{\text{left}}^{\pi} + N_{\text{right}}^{\pi}}$$







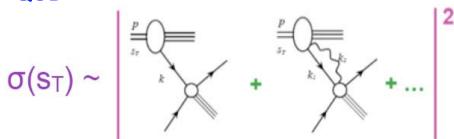


December 11, 2008

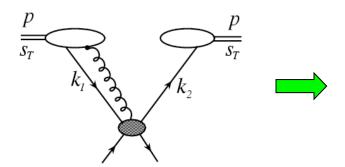
SSA in QCD Collinear Factorization

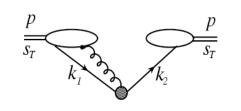
 \square All scales >> Λ_{QCD} :

Efremov, Teryaev, 1982, Qiu, Sterman, 1991



□ Factorization at twist-3:





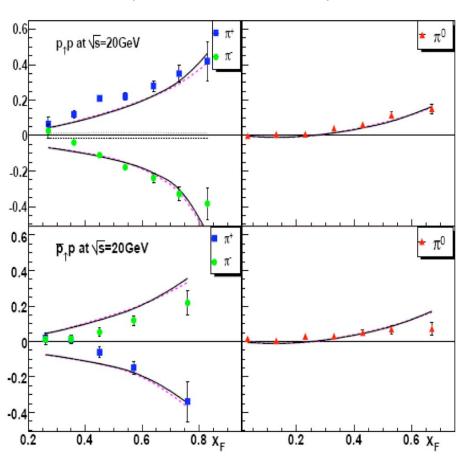
$$A_N \propto \frac{\int dk_T}{P_T}$$

Normal twist-2 distributions

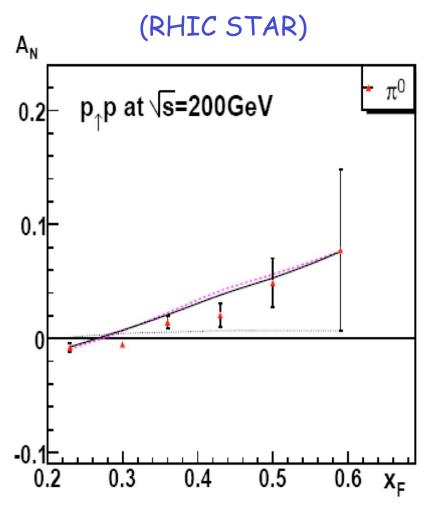
☐ Twist-3 quark-gluon correlation:

$$T_{q,F}(x,x,\mu_F) = \int \frac{dy_1^-}{2\pi} e^{ixP^+y_1^-} \langle P, s_T | \overline{\psi}_q(0) \frac{\gamma^+}{2} \left[\int dy_2^- \epsilon^{s_T \sigma n \bar{n}} F_{\sigma}^{+}(y_2^-) \right] \psi_q(y_1^-) | P, s_T \rangle$$

Initial Success of the Formalism



 $T_{q,F}(x,x,\mu_F)$ contribution only!

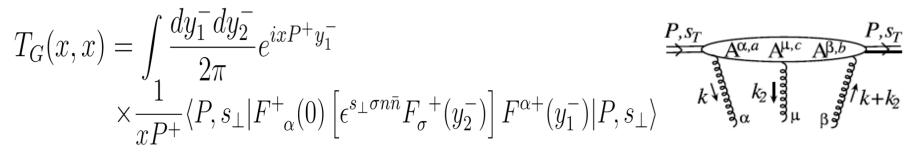


Kouvaris, Qiu, Vogelsang, Yuan, PRD, 2006

Twist-3 tri-gluon correlations

☐ Diagonal tri-gluon correlations:

Ji, 1992, Kang, Qiu 2008 Kang, Qiu, Vogelsang, Yuan, 2008



☐ Two tri-gluon correlation functions – color contraction:

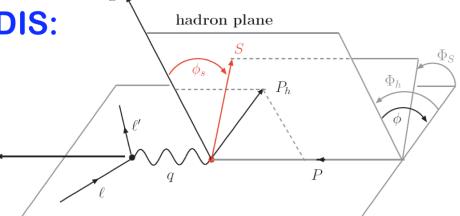
$$T_G^{(f)}(x,x) \propto i f^{ABC} F^A F^C F^B = F^A F^C (\mathcal{T}^C)^{AB} F^B$$
$$T_G^{(d)}(x,x) \propto d^{ABC} F^A F^C F^B = F^A F^C (\mathcal{D}^C)^{AB} F^B$$

Quark-gluon correlation: $T_F(x,x) \propto \overline{\psi}_i F^C(T^C)_{ij} \psi_j$

- □ D-meson production in SIDIS:
 - ♦ Clean probe for gluonic twist-3 correlation functions
 - $\Leftrightarrow T_G^{(f)}(x,x)$ could be connected to the gluonic Sivers function

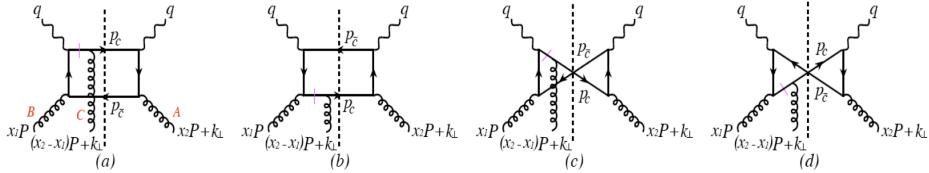
D-meson production in SIDIS

☐ Frame for SIDIS:



lepton plane

■ Dominated by the tri-gluon subprocess:



☐ Single transverse-spin asymmetry:

$$A_N = \frac{\sigma(s_\perp) - \sigma(-s_\perp)}{\sigma(s_\perp) + \sigma(-s_\perp)} = \frac{d\Delta\sigma(s_\perp)}{dx_B dy dz_h dP_{h\perp}^2 d\phi} / \frac{d\sigma}{dx_B dy dz_h dP_{h\perp}^2 d\phi}$$

Kang, Qiu, PRD 2008

Spin-dependent cross section

 \square Contribution from $T_G^{(f)}$:

Color factor

$$\frac{d\Delta\sigma(s_{\perp})}{dx_B dy dz_h dP_{h_{\perp}}^2 d\phi} = \sigma_0 \int_{x_{min}}^1 dx \int \frac{dz}{z} D(z) \delta\left(\frac{P_{h_{\perp}}^2}{z_h^2} - \frac{(1-\hat{x})(1-\hat{z})}{\hat{x}\hat{z}} Q^2 + \hat{z}^2 m_c^2\right) \left(\frac{1}{4}\right) \\
\times \left[\epsilon^{P_h s_{\perp} n\bar{n}} \left(\frac{\sqrt{4\pi\alpha_s}}{z\hat{t}}\right) \left(1 + \frac{\hat{t}}{\hat{u}}\right)\right] \sum_{i=1}^4 \mathcal{A}_i \left[-x \frac{d}{dx} \left(\frac{T_G(x,x)}{x}\right) \hat{W}_i + \left(\frac{T_G(x,x)}{x}\right) \hat{N}_i\right]$$

lacksquare Partonic hard parts: $\hat{W}_i
eq \hat{N}_i$

$$\mathcal{A}_1 = 1 + \cosh^2 \psi$$
 $\mathcal{A}_2 = -2$ $\mathcal{A}_3 = -\cos \phi \sinh 2\psi$ $\mathcal{A}_4 = \cos 2\phi \sinh^2 \psi$

$$\hat{W}_{1} = 2 \left[\frac{\hat{u}}{\hat{t}} + \frac{\hat{t}}{\hat{u}} - \frac{2\hat{s}Q^{2}}{\hat{t}\hat{u}} + \frac{4\hat{x}^{2}\hat{s}}{Q^{2}} \right]$$

$$+ 4m_{c}^{2} \left[\frac{Q^{2} - 2\hat{t}}{\hat{t}^{2}} + \frac{Q^{2} - 2\hat{u}}{\hat{u}^{2}} - \frac{2\hat{x}^{2}}{Q^{2}} \left(\frac{\hat{u}}{\hat{t}} + \frac{\hat{t}}{\hat{u}} + 2 \right) \right] - 8m_{c}^{4} \left[\frac{1}{\hat{t}} + \frac{1}{\hat{u}} \right]^{2}$$

$$\hat{N}_{1} = 4 \left[\frac{2m_{c}^{2} - Q^{2}}{\hat{t}\hat{u}} + \frac{6\hat{x}^{2}}{Q^{2}} \right] \left[(\hat{s} - Q^{2}) - 2m_{c}^{2} \left(\frac{\hat{u}}{\hat{t}} + \frac{\hat{t}}{\hat{u}} + 2 \right) \right] ,$$

$$\hat{W}_{2} = \frac{16\hat{x}^{2}}{Q^{2}} \left[\hat{s} - m_{c}^{2} \left(\frac{\hat{u}}{\hat{t}} + \frac{\hat{t}}{\hat{u}} + 2 \right) \right] ,$$

$$\hat{W}_{3} = 4\hat{x}\hat{z}\frac{q_{\perp}}{Q} (\hat{u} - \hat{t}) \left[\frac{\hat{s} - Q^{2}}{\hat{t}\hat{u}} - 2m_{c}^{2} \left(\frac{1}{\hat{t}} + \frac{1}{\hat{u}} \right)^{2} \right]$$

$$\hat{N}_{3} = \frac{2Q}{\hat{x}q_{\perp}} (\hat{u} - \hat{t}) \left[\left(\frac{4\hat{z}^{2}q_{\perp}^{2}}{\hat{t}\hat{u}} - \frac{1}{Q^{2} + \hat{s}} \right) \left(2m_{c}^{2} \left(\frac{1}{\hat{t}} + \frac{1}{\hat{u}} \right) - 2\hat{z}q_{\perp}^{2} \right] \right]$$

$$\hat{W}_{4} = 8\hat{z}^{2}q_{\perp}^{2} \left[\frac{Q^{2}}{\hat{t}\hat{u}} + m_{c}^{2} \left(\frac{1}{\hat{t}} + \frac{1}{\hat{u}} \right)^{2} \right] ,$$

$$\hat{N}_{4} = 8 \left[2\hat{z}q_{\perp}^{2} - \frac{\hat{t}\hat{u}}{Q^{2} + \hat{s}} \right] \left[\frac{Q^{2}}{\hat{t}\hat{u}} + m_{c}^{2} \left(\frac{1}{\hat{t}} + \frac{1}{\hat{u}} \right)^{2} \right] .$$

lacksquare Contribution from $T_G^{(d)}$ is the same except the color factor

Features of the SSA

■ Dependence on tri-gluon correlation functions:

$$D - \text{meson} \propto T_G^{(f)} + T_G^{(d)}$$
 $\overline{D} - \text{meson} \propto T_G^{(f)} - T_G^{(d)}$

$$\overline{D}$$
 - meson $\propto T_G^{(f)} - T_G^{(d)}$

Separate $\,T_G^{(f)}$ and $\,T_G^{(d)}$ by the difference between $\,D\,$ and $\,\bar{\!D}$

■ Model for tri-gluon correlation functions:

$$T_G^{(f,d)}(x,x) = \lambda_{f,d}G(x)$$
 $\lambda_{f,d} = \pm \lambda_F = \pm 0.07 \text{GeV}$

$$\lambda_{f,d} = \pm \lambda_F = \pm 0.07 \text{GeV}$$

Kinematic constraints:

$$x_{min} = \begin{cases} x_B \left[1 + \frac{P_{h\perp}^2 + m_c^2}{z_h (1 - z_h) Q^2} \right], & \text{if } z_h + \sqrt{z_h^2 + \frac{P_{h\perp}^2}{m_c^2}} \ge 1 \\ x_B \left[1 + \frac{2m_c^2}{Q^2} \left(1 + \sqrt{1 + \frac{P_{h\perp}^2}{z_h^2 m_c^2}} \right) \right], & \text{if } z_h + \sqrt{z_h^2 + \frac{P_{h\perp}^2}{m_c^2}} \le 1 \end{cases}$$

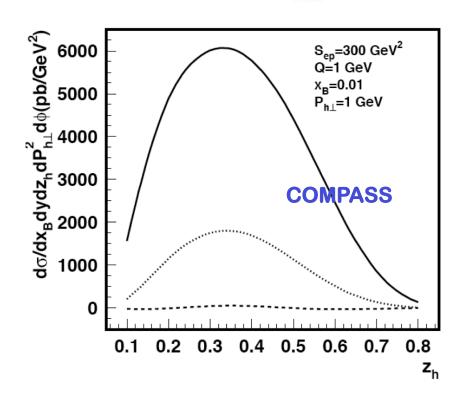
Note: The $z_h(1-z_h)$ has a maximum

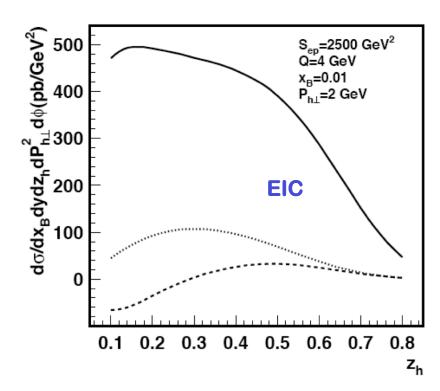
SSA should have a minimum if the derivative term dominates

Numerical Estimate

□ Production rate (spin averaged):

$$\frac{d\sigma}{dx_B dy dz_h dP_{h\perp}^2 d\phi} = \sigma_0^U + \sigma_1^U \cos\phi + \sigma_2^U \cos 2\phi$$

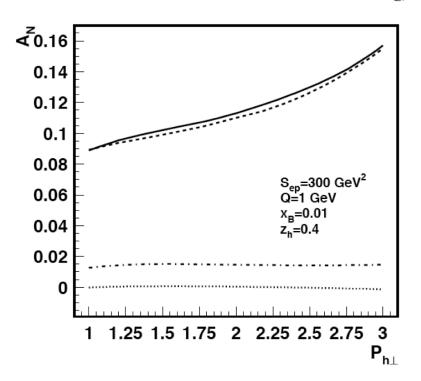


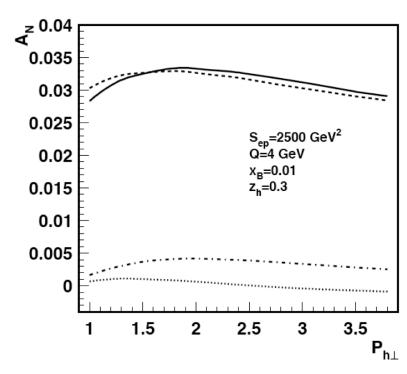


Small φ dependence, reasonable production rate

Maximum in the SSA of D-production

\square SSA for D^0 production ($T_G^{(f)}$ only):





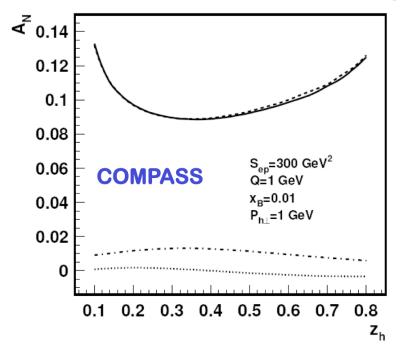
- ❖ The SSA is a twist-3 effect, it should fall off as 1/P_T when P_T >> m_c
- ❖ For the region, P_T ~ m_c,

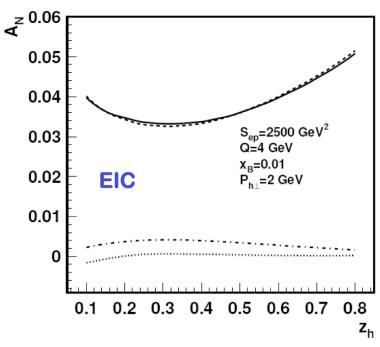
$$A_N \propto \epsilon^{P_h s_{\perp} n \bar{n}} \frac{1}{\tilde{t}} = -\sin \phi_s \frac{P_{h\perp}}{\tilde{t}}$$

$$\tilde{t} = (p_c - q)^2 - m_c^2 = -\frac{1 - \hat{z}}{\hat{x}}Q^2$$
 $\hat{z} = z_h/z, \quad \hat{x} = x_B/x$

Minimum in the SSA of D-production

\square SSA for \mathbb{D}^0 production ($T_G^{(f)}$ only):





- **Derivative term dominates, and small φ dependence**
- \clubsuit Asymmetry is twice if $T_G^{(f)} = + T_G^{(d)}$, or zero if $T_G^{(f)} = T_G^{(d)}$
- * If $T_G^{(d)}=0$, same SSA for \bar{D} meson.
- **❖** Asymmetry has a minimum ~ z_h ~ 0.5

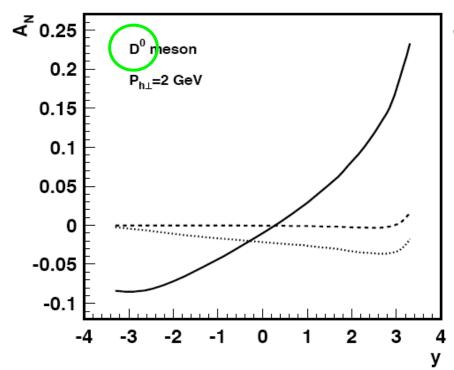
SSA of D-production in Hadronic Collisions

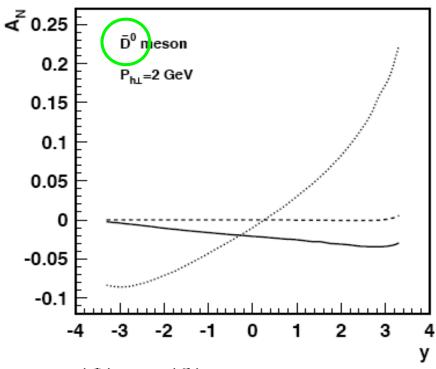
☐ SSA at RHIC:

$$\sqrt{s} = 200 \text{ GeV}$$
 $\mu = \sqrt{m_c^2 + P_{h\perp}^2}$ $m_c = 1.3 \text{ GeV}$

$$\mu = \sqrt{m_c^2 + P_{h\perp}^2}$$

$$m_c = 1.3 \text{ GeV}$$





Dashed:

$$(2) \lambda_f = \lambda_d = 0$$

Solid:

(1)
$$\lambda_f = \lambda_d = 0.07 \text{ GeV}$$
 $T_G^{(f)} = T_G^{(d)}$

Dotted: (3)
$$\lambda_f = -\lambda_d = 0.07 \text{ GeV}$$
 $T_G^{(f)} = -T_G^{(d)}$

$$T_G^{(J)} = T_G^{(a)} = 0$$

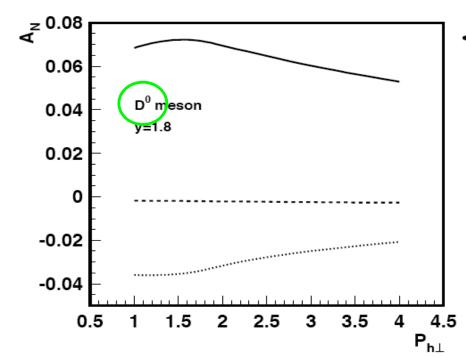
$$T_G^{(f)} = T_G^{(d)}$$

$$T_G^{(f)} = -T_G^{(d)}$$

Any sizable SSA = tri-gluon correlation

Maximum of the SSA

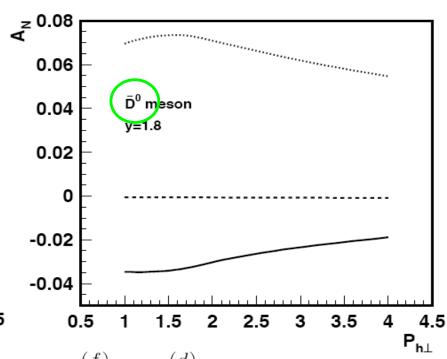
SSA at RHIC:
$$\sqrt{s}=200~{\rm GeV}$$
 $\mu=\sqrt{m_c^2+P_{h\perp}^2}$ $m_c=1.3~{\rm GeV}$



Dashed: (2) $\lambda_f = \lambda_d = 0$

(1) $\lambda_f = \lambda_d = 0.07 \text{ GeV}$ $T_G^{(f)} = T_G^{(d)}$ Solid:

Dotted: (3) $\lambda_f = -\lambda_d = 0.07 \text{ GeV}$ $T_C^{(f)} = -T_C^{(d)}$



$$T_G^{(f)} = T_G^{(d)} = 0$$

$$T_G^{(f)} = T_G^{(d)}$$

$$T_G^{(f)} = -T_G^{(d)}$$

SSA decreases when $p_T >> m_c$

Evolution Equations for Tri-gluon Correlation

 $\frac{\partial T_{G,F}^{(f)}(x,x,\mu_F)}{\partial \ln \mu_-^2} = \frac{\alpha_s}{2\pi} \int_{-\epsilon}^1 \frac{d\xi}{\xi} \left\{ P_{gg}(z) T_G^{(f)}(\xi,\xi,\mu_F) \right\}$ $+\frac{C_A}{2}\left[2\left(\frac{z}{1-z}+\frac{1-z}{z}+z(1-z)\right)\left[T_{G,F}^{(f)}(\xi,x,\mu_F)-T_{G,F}^{(f)}(\xi,\xi,\mu_F)\right]\right]$ $+2\left(1-\frac{1-z}{2z}-z(1-z)\right)T_{G,F}^{(f)}(\xi,x,\mu_F)$ $+\frac{C_A}{2}\left[(1+z) T_{\Delta G,F}^{(f)}(x,\xi,\mu_F) \right]$ $+P_{gq}(z)\left(\frac{N_c^2}{N_c^2-1}\right)\sum \left[T_{q,F}(\xi,\xi,\mu_F)-T_{\bar{q},F}(\xi,\xi,\mu_F)\right]$; $\frac{\partial T_{G,F}^{(d)}(x,x,\mu_F)}{\partial \ln u^2} = \frac{\alpha_s}{2\pi} \int_{-\epsilon}^{1} \frac{d\xi}{\xi} \left\{ P_{gg}(z) T_{G,F}^{(d)}(\xi,\xi,\mu_F) \right\}$

$$\frac{\partial \ln \mu_F^2}{\partial \ln \mu_F^2} = \frac{1}{2\pi} \int_x^{\infty} \frac{1}{\xi} \left\{ T_{gg}(z) T_{G,F}(\xi,\xi,\mu_F) + \frac{1-z}{2} + z(1-z) \right\} \left[T_{G,F}^{(d)}(\xi,x,\mu_F) - T_{G,F}^{(d)}(\xi,\xi,\mu_F) \right] + 2 \left(1 - \frac{1-z}{2z} - z(1-z) \right) T_{G,F}^{(d)}(\xi,x,\mu_F) \right] + \frac{C_A}{2} \left[(1+z) T_{\Delta G,F}^{(d)}(x,\xi,\mu_F) \right] + P_{gq}(z) \left(\frac{N_c^2 - 4}{N_c^2 - 1} \right) \sum_{\sigma} \left[T_{q,F}(\xi,\xi,\mu_F) + T_{\bar{q},F}(\xi,\xi,\mu_F) \right] \right\}.$$

- ♦ Similar to DGLAP of PDFs, All kernels are IR safe
- $\Leftrightarrow T_{C}^{(d)}$ can be perturbatively generated if $T_{q,F}+T_{\bar{q},F}\neq 0$

Kang, Qiu, 0811.3101 [hep-ph]

Scale dependence of Quark-gluon Correlation

Kang, Qiu, 2008

$$\begin{split} \frac{\partial T_{q,F}(x,x,\mu_F)}{\partial \ln \mu_F^2} &= \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} \bigg\{ P_{qq}(z) \, T_{q,F}(\xi,\xi,\mu_F) \\ &+ \frac{C_A}{2} \left[\frac{1+z^2}{1-z} \left[T_{q,F}(\xi,x,\mu_F) - T_{q,F}(\xi,\xi,\mu_F) \right] + z \, T_{q,F}(\xi,x,\mu_F) \right] \\ &+ \frac{C_A}{2} \left[T_{\Delta q,F}(x,\xi,\mu_F) \right] \\ &+ P_{qg}(z) \left(\frac{1}{2} \right) \left[T_{G,F}^{(d)}(\xi,\xi,\mu_F) + T_{G,F}^{(f)}(\xi,\xi,\mu_F) \right] \bigg\} \\ &\frac{\partial T_{\bar{q},F}(x,x,\mu_F)}{\partial \ln \mu_F^2} &= \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} \left\{ P_{qq}(z) \, T_{\bar{q},F}(\xi,\xi,\mu_F) \\ &+ \frac{C_A}{2} \left[\frac{1+z^2}{1-z} \left[T_{\bar{q},F}(\xi,x,\mu_F) - T_{\bar{q},F}(\xi,\xi,\mu_F) \right] + z \, T_{\bar{q},F}(\xi,x,\mu_F) \right] \\ &+ \frac{C_A}{2} \left[T_{\Delta \bar{q},F}(x,\xi,\mu_F) \right] \\ &+ P_{qg}(z) \left(\frac{1}{2} \right) \left[T_{G,F}^{(d)}(\xi,\xi,\mu_F) - T_{G,F}^{(f)}(\xi,\xi,\mu_F) \right] \bigg\} ; \end{split}$$

- → Equations depend on off-diagonal correlation functions

Twist-3 correlation functions relevant to SSAs

□ Set I:

Qiu, Sterman, 1991, 1998 Ji, 1992, Kang, Qiu, 2008

$$\widetilde{\mathcal{T}}_{q,F} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+ y_1^-} e^{ix_2P^+ y_2^-} \langle P, s_T | \overline{\psi}_q(0) \frac{\gamma^+}{2} \left[\epsilon^{s_T \sigma n\bar{n}} F_{\sigma}^+(y_2^-) \right] \psi_q(y_1^-) | P, s_T \rangle \qquad q(x)$$

$$\widetilde{T}_{G,F}^{(f,d)} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+y_1^-} e^{ix_2P^+y_2^-} \frac{1}{P^+} \langle P, s_T | F^{+\rho}(0) \left[\epsilon^{s_T \sigma n\bar{n}} F_{\sigma}^{+}(y_2^-) \right] F^{+\lambda}(y_1^-) | P, s_T \rangle (-g_{\rho\lambda})$$

$$xG(x)$$

☐ Set II:

$$\widetilde{T}_{\Delta q,F} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+ y_1^-} e^{ix_2P^+ y_2^-} \langle P, s_T | \overline{\psi}_q(0) \frac{\gamma^+ \gamma^5}{2} \left[i \, s_T^\sigma \, F_\sigma^{\ +}(y_2^-) \right] \psi_q(y_1^-) | P, s_T \rangle \Delta q(x)$$

$$\widetilde{T}_{\Delta G,F}^{(f,d)} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+ y_1^-} e^{ix_2P^+ y_2^-} \frac{1}{P^+} \langle P, s_T | F^{+\rho}(0) \left[i \, s_T^\sigma \, F_\sigma^{\,+}(y_2^-) \right] F^{+\lambda}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right) \\ \times \Delta G(x)$$

Two possible color contractions: if_{abc}, d_{abc} Two possible tri-gluon correlation functions

Connection to Twist-2 PDFs

□ Set I:

Spin-averaged twist-2 PDFs + an operator Insertion

$$\int \frac{dy_2^-}{2\pi} e^{ix_2P^+y_2^-} \left[\epsilon^{s_T\sigma n\bar{n}} F_{\sigma}^{+}(y_2^-) \right] = i \int \frac{dy_2^-}{2\pi} e^{ix_2P^+y_2^-} \left[i \epsilon_{\perp}^{\rho\sigma} s_{T\rho} F_{\sigma}^{+}(y_2^-) \right]$$

☐ Set II:

Spin-dependent twist-2 HDFs + an operator Insertion

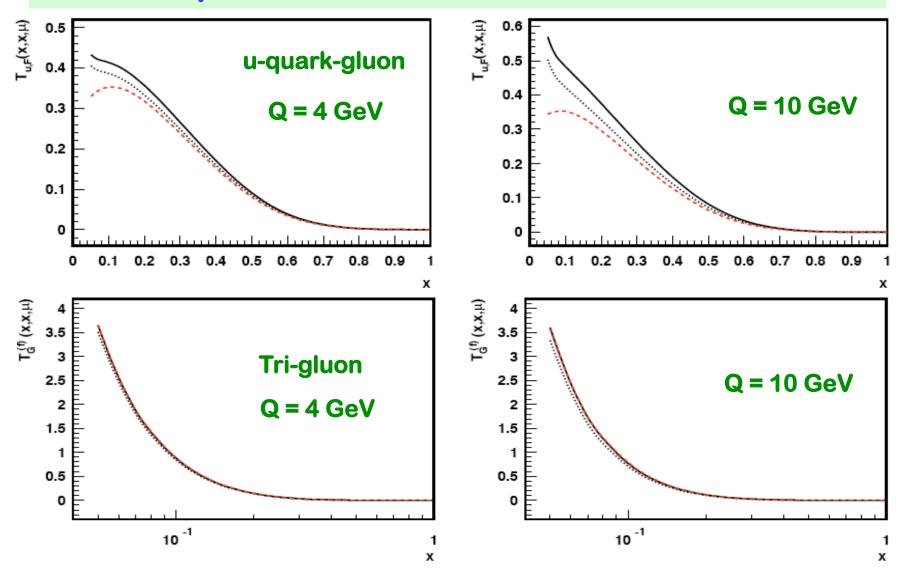
$$i \int \frac{dy_2^-}{2\pi} e^{ix_2P^+y_2^-} \left[s_T^{\sigma} F_{\sigma}^+(y_2^-) \right]$$

□ Extra 'i'

Phase needed for the nonvanishing SSAs

Do not contribute to parity conserving double-spin asymmetry! such as g₂

Q²-Dependence of Correlation Functions



Similar to DGLAP except small-x region

Summary

- ☐ Single transverse-spin asymmetry is directly connected to the parton's transverse motion (P and T invariance)
 - an excellent probe for the cause of parton's transverse motion
- ☐ Two complementary approaches:

TMD: direct k_T information — two-scale observables

Collinear: net spin-dependence of all k_T – single-scale observables

- □ D-meson production in SIDIS, as well as in hadron-hadron collisions, is an excellent observable to measure the new tri-gluon correlation functions
 - QCD global analysis of twist-3 distributions $T_{q,F}$ $T_{G,F}$ that are responsible for the SSAs $T_{\Delta q,F}$ $T_{\Delta G,F}$

Backup slides

What is the $T_F(x,x)$?

lacksquare Twist-3 correlation $T_F(x,x)$:

$$\begin{split} T_F(x,x) &= \int \frac{dy_1^-}{4\pi} \mathrm{e}^{ixP^+y_1^-} \\ &\times \langle P, \vec{s}_T | \bar{\psi}_a(0) \gamma^+ \left[\int dy_2^- \epsilon^{s_T \sigma n \bar{n}} \; F_{\sigma}^{\; +}(y_2^-) \right] \psi_a(y_1^-) | P, \vec{s}_T \rangle \end{split}$$

Twist-2 quark distribution:

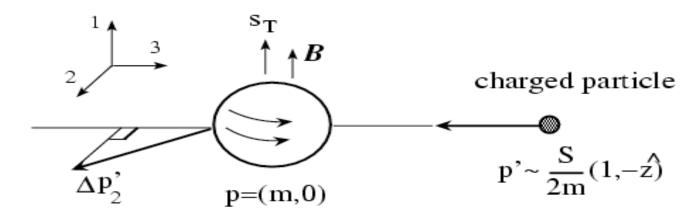
$$q(x) = \int \frac{dy_1^-}{4\pi} e^{ixP^+y_1^-} \langle P, \vec{s}_T | \bar{\psi}_a(0) \gamma^+ \psi_a(y_1^-) | P, \vec{s}_T \rangle$$

 $T_F(x,x)$ represents a net spin dependence of a quark's transverse motion via a gluon interaction inside a transversely polarized proton

What the $T_F(x,x)$ tries to tells us?

rest frame of (p,s_T)

Consider a classical (Abelian) situation:



change of transverse momentum

$$\frac{d}{dt}p_2' = e(\vec{v}' \times \vec{B})_2 = -ev_3B_1 = ev_3F_{23}$$

in the c.m. frame

$$(m, \vec{0}) \rightarrow \bar{n} = (1, 0, 0_T), \quad (1, -\hat{z}) \rightarrow n = (0, 1, 0_T)$$

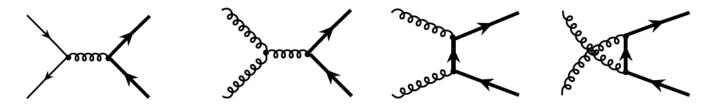
$$\implies \frac{d}{dt}p_2' = e \, \epsilon^{s_T \sigma n \bar{n}} \, F_{\sigma}^{+}$$

– total change:
$$\Delta p_2' = e \int dy^- \epsilon^{s_T \sigma n \bar{n}} \, F_\sigma^{\; +}(y^-)$$

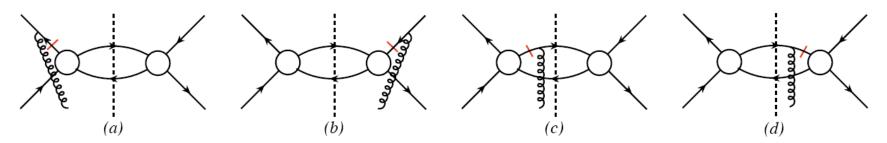
D-meson production in Hadronic Collisions

Kang, Qiu, Vogelsang, Yuan, 2008

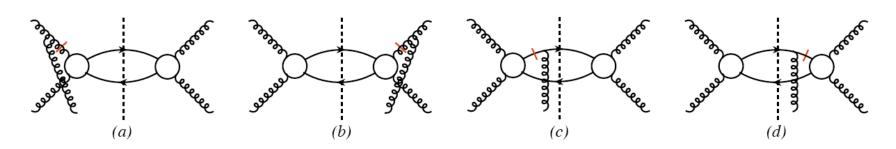
☐ Two partonic subprocesses:



□ Quark-antiquark annihilation:



☐ Gluon-gluon fusion:



Factorized formula for D-meson production

☐ Same factorized formula for both subprocesses:

$$E_{P_{h}} \frac{d\Delta\sigma}{d^{3}P_{h}} \bigg|_{q\bar{q}\to c\bar{c}} = \frac{\alpha_{s}^{2}}{S} \sum_{q} \int \frac{dz}{z^{2}} D_{c\to h}(z) \int \frac{dx'}{x'} \phi_{\bar{q}/B}(x') \int \frac{dx}{x} \sqrt{4\pi\alpha_{s}} \left(\frac{\epsilon^{P_{h}s_{T}n\bar{n}}}{z\tilde{u}}\right) \delta\left(\tilde{s}+\tilde{t}+\tilde{u}\right)$$

$$\times \left[\left(T_{q,F}(x,x)-x\frac{d}{dx}T_{q,F}(x,x)\right) H_{q\bar{q}\to c}(\tilde{s},\tilde{t},\tilde{u}) + T_{q,F}(x,x) \mathcal{H}_{q\bar{q}\to c}(\tilde{s},\tilde{t},\tilde{u})\right],$$

$$E_{P_{h}} \frac{d\Delta\sigma}{d^{3}P_{h}} \bigg|_{gg\to c\bar{c}} = \frac{\alpha_{s}^{2}}{S} \sum_{i=f,d} \int \frac{dz}{z^{2}} D_{c\to h}(z) \int \frac{dx'}{x'} \phi_{g/B}(x') \int \frac{dx}{x} \sqrt{4\pi\alpha_{s}} \left(\frac{\epsilon^{P_{h}s_{T}n\bar{n}}}{z\tilde{u}}\right) \delta\left(\tilde{s}+\tilde{t}+\tilde{u}\right)$$

$$\times \left[\left(T_{G}^{(i)}(x,x)-x\frac{d}{dx}T_{G}^{(i)}(x,x)\right) H_{gg\to c}^{(i)}(\tilde{s},\tilde{t},\tilde{u}) + T_{G}^{(i)}(x,x) \mathcal{H}_{gg\to c}^{(i)}(\tilde{s},\tilde{t},\tilde{u})\right],$$

☐ Hard parts:

$$H_{q\bar{q}\to c} = H_{q\bar{q}\to c}^{I} + H_{q\bar{q}\to c}^{F} \left(1 + \frac{\tilde{u}}{\tilde{t}}\right) \qquad H_{gg\to c}^{(i)} = H_{gg\to c}^{I(i)} + H_{gg\to c}^{F(i)} \left(1 + \frac{\tilde{u}}{\tilde{t}}\right)$$

All $\mathcal{H}_{q\bar{q}\to c}$ and $\mathcal{H}_{gg\to c}^{I(i)}$ and $\mathcal{H}_{gg\to c}^{F(i)}$ vanish as $m_c^2\to 0$

lacksquare Hard parts change sign for $T_G^{(d)}(x,x)$ when $c{
ightarrow} ar{c}$

$$H_{gg\to\bar{c}}^{(f)} = H_{gg\to c}^{(f)}, \qquad H_{gg\to\bar{c}}^{(d)} = -H_{gg\to c}^{(d)},$$

$$\mathcal{H}_{gg\to\bar{c}}^{(f)} = \mathcal{H}_{gg\to c}^{(f)}, \qquad \mathcal{H}_{gg\to\bar{c}}^{(d)} = -\mathcal{H}_{gg\to c}^{(d)}.$$