Semi-inclusive production: low p_T , high p_T , and in between

M. Diehl

Deutsches Elektronen-Synchroton DESY

EIC Collaboration Meeting LBNL, 11 December 2008

The question	High- q_T results	Low- q_T results	Comparison	Integrated observables	Summary
00000	0	000000	0000000	000000	0

- 1. The question
- 2. High- q_T results
- 3. Low- q_T results
- 4. Comparison
- 5. Integrated observables
- 6. Summary

present results from

A. Bacchetta, D. Boer, M. Diehl, P. Mulders, JHEP 0808 (2008) 023

closely related to work: X. Ji, J.-W. Qiu, W. Vogelsang, F. Yuan '06 and Y. Koike, W. Vogelsang, F. Yuan '07 on Sivers asymmetry

The question	High- q_T results	Low- q_T results	Comparison	Integrated observables	Summary
00000	0	000000	0000000	000000	0

- 1. The question
- 2. High- q_T results
- 3. Low- q_T results
- 4. Comparison
- 5. Integrated observables
- 6. Summary

warning: will use power counting as main tool

- no numerical estimates at this stage
- $\ + \$ aim at clarifying theoretical situation and inducing further work
- + consequences for experimental analyses

The physics question:

general setting: hard processes with measured transverse momentum q_T in the final state

here: semi-inclusive deep inelastic scattering

 $ep \rightarrow e + h + X$

transfer results to

- Drell-Yan process $pp \rightarrow \ell^+ \ell^- + X$
- hadron pair production $e^+e^- \rightarrow h_1 + h_1 + X$

by crossing symmetry

- physics motivations:
 - understand a basic feature of QCD final states
 - use as tool for extracting specific parton distributions
- \blacktriangleright two different frameworks to describe $oldsymbol{q}_T$ distribution \rightsquigarrow

- 'intrinsic transverse momentum' of partons in hadron use p_T dependent parton densities and fragmentation fcts. adequate for low q_T
 Cahn '78, 89
- perturbative radiation

 use standard collinear pdfs and fragm. fcts.
 adequate for high q_T
 Georgi, Politzer '78
- \blacktriangleright both mechanisms \rightsquigarrow nontrivial angular dependence of ${\pmb q}_T$ nonzero cross section for longitudinal γ^*

- 'intrinsic transverse momentum' of partons in hadron use p_T dependent parton densities and fragmentation fcts. adequate for low q_T
 Cahn '78, 89
- perturbative radiation

 use standard collinear pdfs and fragm. fcts.
 adequate for high q_T
 Georgi, Politzer '78
- How are the two mechanisms related? complementary? try to interpolate between them? competing? can add without double counting?

Scales and power counting

photon virtuality Q, transv. mom. $q_T,$ nonperturbative scale M in following always $Q\gg M$

• "low- q_T " mechanism for $q_T \ll Q$

twist expansion in powers of q_T/Q

• "high- q_T " mechanism for $q_T \gg M$

twist expansion in powers of M/q_T

- ▶ in intermediate region $M \ll q_T \ll Q$ can use both descript's and further expand in second ratio of scales
- consistency ~> full results must coincide
- in practice can only calculate leading nonzero terms in each approach (twist 2 and possibly twist 3) and these need not coincide

The question	High- q_T results	Low- q_T results	Comparison	Integrated observables	Summary
00000	0	000000	0000000	000000	0

•
$$\mathcal{O}(q_T, Q) = A \frac{M^2}{M^2 + q_T^2} + B \frac{q_T^2}{Q^2} \frac{M^2}{M^2 + q_T^2}$$

$$\stackrel{q_T \ll Q}{=} A \frac{M^2}{M^2 + q_T^2} + \mathcal{O}\left(\frac{q_T^2}{Q^2}\right)$$
$$\stackrel{M \ll q_T}{=} A \frac{M^2}{q_T^2} + B \frac{M^2}{Q^2} + \mathcal{O}\left(\frac{M^4}{q_T^4}\right)$$

The question	High- q_T results	Low- q_T results	Comparison	Integrated observables	Summary
00000	0	000000	0000000	000000	0

•
$$\mathcal{O}(q_T, Q) = A \frac{M^2}{M^2 + q_T^2} + B \frac{q_T^2}{Q^2} \frac{M^2}{M^2 + q_T^2}$$

 $\stackrel{q_T \ll Q}{=} A \frac{M^2}{M^2 + q_T^2} + \mathcal{O}\left(\frac{q_T^2}{Q^2}\right) \qquad \stackrel{M \ll q_T \ll Q}{\equiv} A \frac{M^2}{q_T^2} + \mathcal{O}\left(\frac{q_T^2}{Q^2}, \frac{M^4}{q_T^4}\right)$
 $\stackrel{M \ll q_T}{=} A \frac{M^2}{q_T^2} + B \frac{M^2}{Q^2} + \mathcal{O}\left(\frac{M^4}{q_T^4}\right) \qquad \stackrel{M \ll q_T \ll Q}{\equiv} A \frac{M^2}{q_T^2} + \mathcal{O}\left(\frac{M^2}{Q^2}, \frac{M^4}{q_T^4}\right)$

 \rightsquigarrow leading-order terms in both calculations coincide for $M \ll q_T \ll Q$

The question	High- q_T results	Low- q_T results	Comparison	Integrated observables	Summary
00000	0	000000	0000000	000000	0

•
$$\mathcal{O}(q_T, Q) = A \frac{M^2}{M^2 + q_T^2} + B \frac{q_T^2}{Q^2} \frac{M^2}{M^2 + q_T^2}$$

 $\stackrel{q_T \ll Q}{=} A \frac{M^2}{M^2 + q_T^2} + \mathcal{O}\left(\frac{q_T^2}{Q^2}\right) \qquad \stackrel{M \ll q_T \ll Q}{\equiv} A \frac{M^2}{q_T^2} + \mathcal{O}\left(\frac{q_T^2}{Q^2}, \frac{M^4}{q_T^4}\right)$
 $\stackrel{M \ll q_T}{=} A \frac{M^2}{q_T^2} + B \frac{M^2}{Q^2} + \mathcal{O}\left(\frac{M^4}{q_T^4}\right) \qquad \stackrel{M \ll q_T \ll Q}{\equiv} A \frac{M^2}{q_T^2} + \mathcal{O}\left(\frac{M^2}{Q^2}, \frac{M^4}{q_T^4}\right)$

 \rightsquigarrow leading-order terms in both calculations coincide for $M \ll q_T \ll Q$

•
$$\mathcal{O}(q_T, Q) = A \frac{M^4}{M^4 + q_T^4} + B \frac{q_T^2}{Q^2} \frac{M^2}{M^2 + q_T^2}$$

 $\stackrel{q_T \ll Q}{=} A \frac{M^4}{M^4 + q_T^4} + \mathcal{O}\left(\frac{q_T^2}{Q^2}\right) \qquad \stackrel{M \ll q_T \ll Q}{\equiv} A \frac{M^4}{q_T^4} + \mathcal{O}\left(\frac{q_T^2}{Q^2}, \frac{M^6}{q_T^6}\right)$

The question	High- q_T results	Low- q_T results	Comparison	Integrated observables	Summary
00000	0	000000	0000000	000000	0

•
$$\mathcal{O}(q_T, Q) = A \frac{M^2}{M^2 + q_T^2} + B \frac{q_T^2}{Q^2} \frac{M^2}{M^2 + q_T^2}$$

 $\stackrel{q_T \ll Q}{=} A \frac{M^2}{M^2 + q_T^2} + \mathcal{O}\left(\frac{q_T^2}{Q^2}\right) \qquad \stackrel{M \ll q_T \ll Q}{\equiv} A \frac{M^2}{q_T^2} + \mathcal{O}\left(\frac{q_T^2}{Q^2}, \frac{M^4}{q_T^4}\right)$
 $\stackrel{M \ll q_T}{=} A \frac{M^2}{q_T^2} + B \frac{M^2}{Q^2} + \mathcal{O}\left(\frac{M^4}{q_T^4}\right) \qquad \stackrel{M \ll q_T \ll Q}{\equiv} A \frac{M^2}{q_T^2} + \mathcal{O}\left(\frac{M^2}{Q^2}, \frac{M^4}{q_T^4}\right)$

 \rightsquigarrow leading-order terms in both calculations coincide for $M \ll q_T \ll Q$

•
$$\mathcal{O}(q_T, Q) = A \frac{M^4}{M^4 + q_T^4} + B \frac{q_T^2}{Q^2} \frac{M^2}{M^2 + q_T^2}$$

 $\stackrel{q_T \ll Q}{=} A \frac{M^4}{M^4 + q_T^4} + \mathcal{O}\left(\frac{q_T^2}{Q^2}\right) \qquad \stackrel{M \ll q_T \ll Q}{\equiv} A \frac{M^4}{q_T^4} + \mathcal{O}\left(\frac{q_T^2}{Q^2}, \frac{M^6}{q_T^6}\right)$
 $\stackrel{M \ll q_T}{=} B \frac{M^2}{Q^2} + \mathcal{O}\left(\frac{M^4}{q_T^4}\right) \qquad \stackrel{M \ll q_T \ll Q}{\equiv} B \frac{M^2}{Q^2} + \mathcal{O}\left(\frac{M^4}{q_T^4}\right)$

 \rightsquigarrow leading-order terms in both calculations differ for $M \ll q_T \ll Q$ consistency only explicit if retain higher-order terms in each approx.

Variables and observables for $ep \rightarrow e + h + X$

- ▶ photon virtuality Q^2 , photon polarization parameter ε
- \blacktriangleright Bjorken x and z
- ▶ hadron transverse momentum $P_{h\perp}$... use $q_T = P_{h\perp}/z$
- ▶ azimuth φ between hadron and lepton plane and azimuth φ_S for transverse target polarization

Variables and observables for $ep \rightarrow e + h + X$

- ▶ photon virtuality Q^2 , photon polarization parameter ε
- \blacktriangleright Bjorken x and z
- ▶ hadron transverse momentum $P_{h\perp}$... use $q_T = P_{h\perp}/z$
- ▶ azimuth φ between hadron and lepton plane and azimuth φ_S for transverse target polarization

decompose ep cross section as

$$\begin{split} & \frac{d\sigma(ep \to ehX)}{d\phi \, d \dots} = (\text{kin. factor}) \\ & \times \left[F_{UU,T} + \varepsilon F_{UU,L} + 2\sqrt{\varepsilon(1+\varepsilon)} \cos \phi \, F_{UU}^{\cos \phi} + \varepsilon \cos 2\phi \, F_{UU}^{\cos 2\phi} \right] \\ & + S_T \Big[\sin(\phi - \phi_S) \, F_{UT,T}^{\sin(\phi - \phi_S)} + \dots \Big] + \dots \end{split}$$

 \rightsquigarrow semi-inclusive structure functions $F_{\dots}^{\dots}(x, z, Q, q_T)$

The question

High- q_T results

low-q_T results

Comparison 0000000 Integrated observ

observables

Results of the high- q_T calculation

$$F^{\dots}_{\dots} = \frac{1}{q_T^2} \sum_{\text{partons } i,j} \int \frac{d\hat{x}}{\hat{x}} \, \int \frac{d\hat{z}}{\hat{z}} \, f_1^i\!\left(\frac{x}{\hat{x}}\right) D_1^j\!\left(\frac{z}{\hat{z}}\right) K^{ij}_{\dots}\!\left(\hat{x},\hat{z},\frac{q_T}{Q}\right)$$

expanding hard-scattering kernels K^{ij}_{\ldots} for $\frac{q_T}{Q} \rightarrow 0$ find

$$F_{UU,T} \sim \frac{1}{q_T^2} \qquad \qquad F_{UU,L} \sim \frac{1}{Q^2}$$
$$F_{UU}^{\cos\phi} \sim \frac{1}{Qq_T} \qquad \qquad F_{UU}^{\cos 2\phi} = \frac{1}{2} F_{UU,L}$$

▶ all struct. fcts. have a term $\propto f_1(x) D_1(z) \log \frac{Q^2}{q_T^2}$ higher orders give $\alpha_s^n \log^{2n-1}(Q/q_T) \rightsquigarrow$ should resum

Semi-inclusive production: low p_T , high p_T , and in between

The question

High- q_T results

Low- q_T results

Comparison 0000000 Integrated obser

ted observables

Summary

Results of the high- q_T calculation

$$F_{\cdots}^{\cdots} = \frac{1}{q_T^2} \sum_{\text{partons } i,j} \int \frac{d\hat{x}}{\hat{x}} \ \int \frac{d\hat{z}}{\hat{z}} \ f_1^i \Big(\frac{x}{\hat{x}}\Big) \ D_1^j \Big(\frac{z}{\hat{z}}\Big) \ K_{\cdots}^{ij} \Big(\hat{x}, \hat{z}, \frac{q_T}{Q}\Big)$$

expanding hard-scattering kernels $K^{ij}_{...}$ for $\frac{q_T}{Q}
ightarrow 0$ find

$$\begin{split} F_{UU,T} &\sim \frac{1}{q_T^2} & F_{UU,L} \sim \frac{1}{Q^2} \\ F_{UU}^{\cos\phi} &\sim \frac{1}{Q q_T} & F_{UU}^{\cos 2\phi} = \frac{1}{2} F_{UU,L} \end{split}$$

 \blacktriangleright analogous for F_{LL} and $F_{LL}^{\cos\phi}$ with $f_1^i \to g_1^i$

High- q_T results

Results of the high- q_T calculation

$$F^{\dots}_{\dots} = \frac{1}{q_T^2} \sum_{\text{partons } i,j} \int \frac{d\hat{x}}{\hat{x}} \, \int \frac{d\hat{z}}{\hat{z}} \, f_1^i \Big(\frac{x}{\hat{x}}\Big) \, D_1^j \Big(\frac{z}{\hat{z}}\Big) \, K^{ij}_{\dots} \Big(\hat{x}, \hat{z}, \frac{q_T}{Q}\Big)$$

expanding hard-scattering kernels K^{ij}_{\dots} for $\frac{q_T}{Q} \rightarrow 0$ find

$$F_{UU,T} \sim \frac{1}{q_T^2} \qquad F_{UU,L} \sim \frac{1}{Q^2}$$
$$F_{UU}^{\cos \phi} \sim \frac{1}{Qq_T} \qquad F_{UU}^{\cos 2\phi} = \frac{1}{2} F_{UU,L}$$

► $F_{UTTT}^{\sin(\phi-\phi_S)}$, $F_{UT}^{\sin(\phi+\phi_S)} \rightsquigarrow$ twist three (Qiu, Sterman)

The question	High- q_T results	Low- q_T results	Comparison	Integrated observables	Summary
00000	0	•00000	0000000	000000	0

The low- q_T calculation factorization at twist-two accuracy (oversimplified)

$$egin{aligned} F_{\dots} \propto \sum_i \int d^2 oldsymbol{p}_T \, d^2 oldsymbol{k}_T \, d^2 oldsymbol{l}_T \, \delta^{(2)}(oldsymbol{p}_T - oldsymbol{k}_T + oldsymbol{l}_T + oldsymbol{q}_T) \ & imes f^i(x, p_T^2) \, D^i(z, k_T^2) \, U(l_T^2) \end{aligned}$$

Collins, Soper '81; Ji, Ma, Yuan '04; Collins, Rogers, Stasto '07

•
$$U(l_T^2) = \text{soft factor}$$

- for twist three mainly tree-level calculations
 - no detailed investigation of soft gluons
 - results similar to twist two formula w/o $\,U$

Mulders, Tangerman '97; Boer, Mulders, Pijlman '03

▶ in intermediate region M ≪ q_T ≪ Q have at least one large transv. momentum: p_T or k_T or l_T ≫ M

The question	High- q_T results	Low- q_T results	Comparison	Integrated observables	Summary
00000	0	00000	0000000	000000	0

 p_T dependent parton distributions

matrix elements

 $\Phi^{[\Gamma]}(x, \boldsymbol{p}_T) \propto \int d\xi^- d^2 \boldsymbol{\xi}_T \, e^{i \boldsymbol{p} \cdot \boldsymbol{\xi}} \left\langle P | \bar{\psi}(0) \, \mathcal{U}_{(0, \xi)} \, \Gamma \, \psi(\xi) | P \right\rangle \Big|_{\boldsymbol{\xi}^+ = 0}$

with $\mathcal{U}_{(0,\xi)}$ = Wilson line from 0 to ξ along suitable path for unpolarized proton

 $\Gamma = \gamma^+ \qquad \Phi^{[\Gamma]} \propto f_1$ $=\gamma_T^{\alpha}$ $\propto \frac{p_T^{\alpha}}{p_T} f^{\perp}$ twist three $=\gamma^+\gamma_T^{\alpha}\gamma_5 \qquad \propto \frac{\epsilon_T^{\alpha\rho}p_{T\rho}}{M}h_1^{\perp}$ twist two, transversely pol. quarks = . . .

usual twist-two dist., unpolarized quarks

 \blacktriangleright analogous for k_T dep't fragmentation functions: $D_1 \leftrightarrow f_1, \quad D^\perp \leftrightarrow f^\perp, \quad H_1^\perp \leftrightarrow h_1^\perp$

The question	High- q_T results	Low- q_T results	Comparison	Integrated observables	Summary
00000	0	00000	0000000	000000	0

Parton densities at high p_T

for p_T ≫ M can calculate matrix element Φ^[Γ] using collinear factorization similar to e.g. jet production in γ*p factorization not proven;
 will probably fail at higher twists, i.e. high powers of 1/p_T

The question	High- q_T results	Low- q_T results	Comparison	Integrated observables	Summary
00000	0	000000	0000000	000000	0

Parton densities at high p_T

power counting in 1/p_T ⊕ Lorentz invariance
 ⊕ chirality conservation ⊕ time reversal constraints
 → power behavior of Φ^[Γ]

$$\begin{split} f_1(x, p_T^2) &\sim \frac{1}{p_T^2} \, \alpha_s \sum_{\text{partons } j} \left[K_1^j \otimes f_1^j \right] \\ f^{\perp}(x, p_T^2) &\sim \frac{1}{p_T^2} \, \alpha_s \sum_{\text{partons } j} \left[K^{\perp i} \otimes f_1^i \right] \\ h_1^{\perp}(x, p_T^2) &\sim \frac{M^2}{p_T^4} \, \alpha_s \sum_{\text{partons } j} \left[K_3^j \otimes \text{collinear twist-three distributions} \right] \end{split}$$

with hard-scattering kernels K_1 , K^{\perp} , K_3

analogous for fragmentation functions

 $\begin{array}{c|c} \mbox{The question} \\ \mbox{ococo} \\ \mbox$

Low- q_T results in the perturbative regime of q_T

- ▶ plug results into factorization formula for struct. fcts. \rightarrow get F_{m} for $M \ll q_T \ll Q$
- general structure:

$$\begin{split} F_{...} &\propto \sum_{i=q,\bar{q}} \int d^2 \bm{p}_T \, d^2 \bm{k}_T \, d^2 \bm{l}_T \, \delta^{(2)} (\bm{p}_T - \bm{k}_T + \bm{l}_T + \bm{q}_T) \\ &\times f^i(x,p_T^2) \, D^i(z,k_T^2) \, U(l_T^2) \\ &\approx \frac{M^{k-2}}{q_T^k} \sum_{\substack{i=q,\bar{q},\\ j=q,\bar{q},g}} \left[(K^{ji} \otimes f^j)(x) \, D^i(z) + f^i(x) \, (D^j \otimes L^{ji})(z) \\ &+ C f^i(x) \, D^i(z) \right] \end{split}$$

▶ term with coefficient C from soft factor U at $l_T \sim q_T$

The question	High- q_T results	Low- q_T results	Comparison	Integrated observables	Summary
00000	0	00000	0000000	000000	0

Different types of evolution

- 1. p_T integrated distributions
 - ► $f_1(x, p_T^2) \sim 1/p_T^2$ for large p_T $\rightsquigarrow f(x) = \int dp_T^2 f_1(x, p_T^2)$ logarithmically divergent
 - must regularize

heuristically: restrict integral to $p_T < \mu$ technically: use dimensional regularization $\rightsquigarrow \overline{\text{MS}}$

► \rightarrow DGLAP evolution for $f_1(x; \mu^2)$ kernels for evolution and for high- p_T behavior closely related: $\mu^2 \frac{d}{d\mu^2} f(x; \mu^2) \sim \mu^2 \frac{d}{d\mu^2} \int^{\mu^2} dp_T^2 f(x, p_T^2) = \mu^2 f(x, p_T^2 = \mu^2)$ $= \alpha_s \sum_j (K^j \otimes f^j)(x; \mu^2)$

The question	High- q_T results	Low- q_T results	Comparison	Integrated observables	Summary
00000	0	00000	0000000	000000	0

Different types of evolution

- 1. p_T integrated distributions
 - ► $f_1(x, p_T^2) \sim 1/p_T^2$ for large p_T $\rightsquigarrow f(x) = \int dp_T^2 f_1(x, p_T^2)$ logarithmically divergent
- 2. p_T moments, e.g.

•
$$h_1^{\perp}(x, p_T^2) \sim 1/p_T^4$$
 for large p_T
 $\rightsquigarrow h_1^{(1)\perp}(x) = \int dp_T^2 \frac{p_T^2}{2M^2} h_1^{\perp}(x, p_T^2)$ log. divergent
• \rightsquigarrow DGLAP-type evolution for $h_1^{(1)\perp}(x; \mu)$

The question	High- q_T results	Low- q_T results	Comparison	Integrated observables	Summary
00000	0	00000	0000000	000000	0

Different types of evolution

- 3. p_T dependent distributions
 - no DGLAP-type evolution
 - ▶ divergences for $(l-p)^+ \to 0$ cancel in p_T integrated case then $(l-p)^- = \frac{p_T^2}{2(l-p)^+} \to \infty$

 \rightsquigarrow gluon moves fast to the left

 \rightsquigarrow shouldn't be in parton density of right-moving proton

• requires cutoff ζ in gluon rapidity

 \rightsquigarrow Collins-Soper equation for $f_1(x, p_T^2; \zeta)$

- \rightsquigarrow Sudakov factor, resum logarithms of $p_T/\zeta \sim p_T^2/Q^2$
- analogous for $h_1^{\perp}(x, p_T^2; \zeta)$, $H_1^{\perp}(z, k_T^2; \zeta)$, ...

The question	High- q_T results	Low- q_T results	Comparison	Integrated observables	Su
00000	0	000000	000000	000000	0

Compare high- and low- q_T results in region $M \ll q_T \ll Q$

		low- q_T calc.	high- q_T calc.
$F_{UU,T} \sim$	$\frac{1}{q_T^2}$	from $f_1(x, p_T^2), D_1(z, k_T^2)$	$\frac{1}{q_T^2}$
$F_{UU,L} \sim$	$\frac{1}{Q^2}$	from twist four: unknown	$\frac{1}{Q^2}$
$F_{UU}^{\cos 2\phi} \sim$	$\frac{M^2}{q_T^4}$	from h_1^\perp, H_1^\perp	$\frac{1}{Q^2}$
	$+\frac{1}{Q^2}$	from twist four: unknown	
$F_{UU}^{\cos\phi} \sim$	$\frac{1}{Q q_T}$	from $f_1, f^\perp, D_1, D^\perp$	$\frac{1}{Q q_T}$
$F_{UT,T}^{\sin(\phi-\phi_S)} \sim$	$\frac{M}{q_T^3}$	from f_{1T}^{\perp}, D_1	$\frac{M}{q_T^3}$

The question	High- q_T results	Low- q_T results	Comparison	Integrated observables	Summary
00000	0	000000	000000	000000	0

A closer look at different cases

	low- q_T calc.	high- q_T calc.
$F_{UU,T} \sim$	$\frac{1}{q_T^2}$ from $f_1(x, p_T^2), D_1(z, k_T^2)$	$\frac{1}{q_T^2}$

 F_T : results exactly coincide

Collins, Soper, Sterman '85 and later work

- should not add contributions (double counting)
- ► in phenomenology often use Gaussian for p_T dependence of distribution functions

 \rightsquigarrow lacks perturbative high- p_T tail

 \rightsquigarrow no double counting when add high- q_T result but not a systematic procedure unclear how good for intermediate q_T

The question	High- q_T results	Low- q_T results	Comparison	Integrated observables	Summary
00000	0	000000	000000	000000	0

A closer look at different cases

	low- q_T calc.	high- q_T calc.
$F_{UU,T} \sim$	$\frac{1}{q_T^2}$ from $f_1(x, p_T^2), D_1(z, k_T^2)$	$\frac{1}{q_T^2}$

F_T : results exactly coincide

Collins, Soper, Sterman '85 and later work

- different schemes to interpolate smoothly between the two in literature mainly used for HERA collider data and Drell-Yan P. Nadolsky, C.-P. Yuan et al.
- ▶ use solution of Collins-Soper equation (from low- q_T calc.) to resum log q_T^2/Q^2 terms
- analogous for F_{LL} with $f_1 \rightarrow g_1$

Y. Koike, J. Nagashima, W. Vogelsang '06

The question	High- q_T results	Low- q_T results	Comparison	Integrated observables	Summary
00000	0	000000	000000	000000	0

Correspondence at level of graphs

high- q_T calculation

low- q_T calculation with $q_T \gg M$

The question	High- q_T results	Low- q_T results	Comparison	Integrated observables	Summary
00000	0	000000	000000	000000	0

Correspondence at level of graphs

high- q_T calculation

low- q_T calculation with $q_T \gg M$

The question	$High_{-q_T}$ results \circ	Low- q_T results	Comparison 0000000	Integrated observables	Summary O

	low- q_T calc. high- q_T cal	
$F_{UT,T}^{\sin(\phi-\phi_S)} \sim$	$rac{M}{q_T^3}$ from f_{1T}^{\perp}, D_1	$\frac{M}{q_T^3}$

 $F_{UT,T}^{\sin(\phi-\phi_S)}$: also exact agreement

• requires twist-three calculation at high q_T

X. Ji, J.-W. Qiu, W. Vogelsang, F. Yuan '06

Y. Koike, W. Vogelsang, F. Yuan '07

 expect same situation for Collins asymmetry F^{sin(φ+φ_S)} power counting clear, but explicit calculation not done

The question	Low- q_T results 000000	Comparison 0000000	Integrated observa	ables Summary O
	$low-q_T$ c	alc.	high- q_T calc.	

 $F_{IIII}^{\cos \phi}$: do not have complete twist-three result for low q_T

 $\frac{1}{Qq_T}$

▶ if take soft factor from low-q_T twist-two formula (working assumption) then result agree except for term ∝ f₁(x) D₁(z)

 $F_{UU}^{\cos\phi} \sim \left[\begin{array}{c} rac{1}{Qq_T} & \text{from } f_1, f^{\perp}, D_1, D^{\perp} \end{array} \right]$

- ~> soft-gluons need special attention for establishing twist-three factorization
- \blacktriangleright this is required if want to use Collins-Soper-Sterman method to resum $\log q_T^2/Q^2$ terms

The question	Low- q_T results 000000	Comparison 0000000	Integrated observables	Summary O

		low- q_T calc.	high- q_T calc.
$F_{UU,L} \sim$	$\frac{1}{Q^2}$	from twist four: unknown	$\frac{1}{Q^2}$

F_L :

- twist four calc. for SIDIS at low q_T well beyond reach strong doubts whether factorization actually holds
- calculation in parton model result involving $f_1(x, p_T^2) D_1(z, k_T^2)$ has power behavior $\sim 1/Q^2$

but differs from high- q_T result at intermediate q_T

The question	$High_{-q_T}$ results \circ	Low- q_T results 000000	Comparison 000000	Integrated observables 000000	Summary O

		low- q_T calc.	high- q_T calc.
$F_{UU}^{\cos 2\phi} \sim$	$\frac{M^2}{q_T^4}$	from h_1^\perp, H_1^\perp	
	$+\frac{1}{Q^2}$	from twist four: unknown	$\frac{1}{Q^2}$

 $F_{UU}^{\cos 2\phi}$:

- \blacktriangleright high- q_T result should match with unknown twist-four result at low q_T
- ► at low q_T have leading contrib'n with h[⊥]₁(x, p²_T) H[⊥]₁(z, k²_T) should match with unknown twist-four expression at high q_T
- leading contrib's from both high and low q_T important for $M \ll q_T \ll Q$ can add them without double counting

The question	$High_{-q_T}$ results \circ	Low- q_T results	Comparison 000000●	Integrated observables	Summary O

		low- q_T calc.	high- q_T calc.
$F_{UU}^{\cos 2\phi} \sim$	$\frac{M^2}{q_T^4}$	from h_1^\perp, H_1^\perp	
	$+\frac{1}{Q^{2}}$	from twist four: unknown	$\frac{1}{Q^2}$

 $F_{UU}^{\cos 2\phi}$: interpolating from low to high q_T

► for asymmetry
$$A_{UU}^{\cos 2\phi} = \frac{\varepsilon F_{UU}^{\cos 2\phi}}{F_{UU,T} + \varepsilon F_{UU,L}}$$
 can use
 $A_{UU}^{\cos 2\phi} \approx \frac{\varepsilon L_{UU}^{\cos 2\phi}}{L_{UU,T}} + \frac{\varepsilon H_{UU}^{\cos 2\phi}}{H_{UU,T} + \varepsilon H_{UU,L}}$ at all q_T

in regions where leading results $L_{...}$ at low or $H_{...}$ at high q_T are not valid, they give contrib's suppressed by M^2/q_T^2 or q_T^2/Q^2

The question	High- q_T results	Low- q_T results	Comparison	Integrated observables	Summary
00000	0	000000	0000000	•00000	0

Integrated observables

introduce shorthand notation

$$\left\langle\!\left\langle \left(\frac{q_T}{M}\right)^p F(Q, q_T)\right\rangle\!\right\rangle \stackrel{\text{def}}{=} \pi z^2 \int_0^{q_{\max}^2} dq_T^2 \left(\frac{q_T}{M}\right)^p F(Q, q_T)$$

split integration into

$$\begin{split} q_T^2 &< \Gamma M^2 & \text{low } q_T \\ \Gamma M^2 &< q_T^2 &< \gamma Q^2 & \text{intermediate } q_T & \Gamma \gg 1, \ \gamma \ll 1 \\ \gamma Q^2 &< q_T^2 &< q_{\max}^2 & \text{high } q_T \end{split}$$

- ▶ with suitable weight factor (q_T/M)^p achieve deconvolution of p_T integrals in low-q_T results
- using results for power behavior in different regions can establish their relative importance in integral

The question	$ \underset{\bigcirc}{High-q_T} \text{ results} $	Low- q_T results 000000	Comparison 0000000	Integrated observables	Summary O

 $F_{UU,T}$ revisited

- ▶ all regions contribute at same power ~→ how to join?
- ► heuristically: use low- q_T result for $q_T < \mu$ and high- q_T result for $q_T > \mu$

$$\rightsquigarrow \quad \langle\!\langle F_{UU,T} \rangle\!\rangle = \sum_j x e_j^2 f_1^j(x;\mu^2) D_1^j(z;\mu^2) + \{\alpha_s \text{ term}\}$$

technically: dimensional regularization

- choice $\mu \sim Q$ avoids large log (Q^2/μ^2) terms in α_s term
- \blacktriangleright \rightsquigarrow relate factorization for q_T dependent and q_T integrated observables

The question	High- q_T results 0	Low- q_T results	Comparison 0000000	Integrated observables	Summary O

 $F_{UU,L}$ revisited

	low q_T	intermediate q_T	high q_T
$f(q_T)$	$\int_0^{\Gamma M^2} dq_T^2 f(q_T)$	$\int_{\Gamma M^2}^{\gamma Q^2} dq_T^2 f(q_T)$	$\int_{\gamma Q^2}^{q^2_{\sf max}} dq_T^2 f(q_T)$
$F_{UU,L}$	$\frac{M^2}{Q^2}\Gamma$	γ	1

 \blacktriangleright low- q_T region gives power suppressed contribution

$$\blacktriangleright \quad \rightsquigarrow \quad \langle\!\langle F_{UU,L} \rangle\!\rangle = \mathcal{O}(\alpha_s)$$

The question	High- q_T results	Low- q_T results	Comparison	Integrated observables	Summary
00000	0	000000	0000000	000000	0

Sivers and Collins asymmetries

	low q_T	intermediate q_T	high q_T
$F_{UT,T}^{\sin(\phi-\phi_S)}$, $F_{UT}^{\sin(\phi+\phi_S)}$	1	$\frac{1}{\sqrt{\Gamma}}$	$\frac{1}{\sqrt{\gamma}}\frac{M}{Q}$
$\frac{q_T}{M} F_{UT,T}^{\sin(\phi-\phi_S)}, \ \frac{q_T}{M} F_{UT}^{\sin(\phi+\phi_S)}$	In Γ	$\ln\!\left[\frac{\gamma}{\Gamma}\;\frac{Q^2}{M^2}\right]$	$\ln \frac{1}{\gamma}$

- unweighted integrals: dominated by low q_T , convolutions in p_T
- ▶ weighted integrals: all regions contribute at same power similarly to case of ((F_{UU,T})) get

$$\langle\!\langle (q_T/M) F_{UT,T}^{\sin(\phi-\phi_S)} \rangle\!\rangle = -2 \sum_j x e_j^2 f_{1T}^{j\perp(1)}(x;Q^2) D_1^j(z;Q^2) + \{\alpha_s \text{ term}\}$$

► DGLAP kernel for
$$f_{1T}^{j\perp(1)}(x;Q^2)$$
 essentially known
from known high- p_T behavior of $f_{1T}^{j\perp}$

▶ part of α_s term known from twist-three calc. of H. Eguchi et al. '06

The question	$High_{-q_T}$ results	Low- q_T results	Comparison	Integrated observables	Summary
00000	0	000000	0000000	000000	0

Angular asymmetries

	low q_T	intermediate q_T	high q_T
$F_{UU}^{\cos\phi}$	$\frac{M}{Q}\sqrt{\Gamma}$	$\sqrt{\gamma}$	1
$\frac{q_T}{M} F_{UU}^{\cos\phi}$	$rac{M}{Q}$ Г	$\gamma \frac{Q}{M}$	$\frac{Q}{M}$

- ▶ both weighted and unweighted integral dominated by high q_T \rightsquigarrow not suited for studying low- q_T twist-three result
- up to corrections of order M^2/Q^2 have $\langle\!\langle (q_T/M) F_{UU}^{\cos \phi} \rangle\!\rangle = \mathcal{O}(\alpha_s)$ just like $\langle\!\langle F_{UU,L} \rangle\!\rangle$
- might use this to obtain information on (usual collinear) parton densities and fragmentation fct's (gluon enhanced)
- fully analogous for $\langle\!\langle (q_T/M) F_{LL}^{\cos \phi} \rangle\!\rangle$ with polarized densities

The question 00000	$High_{-q_T}$ results \circ	Low- q_T results	Comparison 0000000	Integrated observables	Summary O

		low q_T	intermediate q_T	high q_T
$F_{UU}^{\cos 2\phi}$	(low q_T)	1	$\frac{1}{\Gamma}$	
	(high q_T)		γ	1
$\frac{q_T^2}{M^2}F_{UU}^{\cos 2\phi}$	(low q_T)	In F	$\ln\!\left[\frac{\gamma}{\Gamma}\;\frac{Q^2}{M^2}\right]$	
	(high q_T)		$\gamma^2 \frac{Q^2}{M^2}$	$\frac{Q^2}{M^2}$

▶ weighted integral: dominated by high q_T → not suited for studying Boer-Mulders and Collins fct.

• unweighted integral: leading contr's from both low and high q_T

- \bullet for latter need $f_1^{q,g}$ and $D_1^{q,g} \ \rightsquigarrow \ \text{information on} \ h_1^\perp$ and H_1^\perp
- otherwise take differential $F_{UU}^{\cos 2\phi}(Q,q_T)$ or integral with upper cutoff
- \rightsquigarrow (unfortunately) no deconvolution of p_T integrals
- \blacktriangleright analogous situation for $\cos 2\phi$ asymmetries in e^+e^- (Belle) and in Drell-Yan

Summary

- ▶ high-p_T behavior of parton densities/fragmentation fcts. from perturbation theory ~> join descriptions for low and high q_T in intermediate region
- ► leading results for high and low q_T match for some observables but not for others ~→ different strategies if want to describe all q_T
- integrated obs' can be dominated by low or high q_T or by both \sim different information on hadron structure
- weighted asymmetries
 - good for Sivers and Collins prospect of full NLO calculation
 - not good for Boer Mulders $\langle \langle (q_T/M) F_{III}^{\cos 2\phi} \rangle \rangle$
 - may be useful for collinear distributions

 $\langle \langle (q_T/M) F_{UU}^{\cos \phi} \rangle \rangle$, $\langle \langle (q_T/M) F_{LL}^{\cos \phi} \rangle \rangle$, similar to $\langle \langle F_{UU,L} \rangle \rangle$