Exclusive reactions at an electron-ion collider

Tanja Horn (JLab)

EIC collaboration meeting, 11 December 2008

- Exclusive Processes Overview
- Experimental challenges
- Outlook

Categories of Exclusive Processes

	"diffractive" (vacuum exchange)	"non-diffractive" (quantum number exchange)
Channel	$\gamma p, \ \rho^0 p, \ J/\psi p, \dots$	$\pi^+ p, \pi^0 p, K\Lambda, \rho^+ n, \ldots$
GPDs	GPD gluon	H non-singlet GPD quark
Cross section	rises with energy	drops with energy
Interest	gluon imaging of nucleon	spin/flavor structure of quark GPDs

Experimental Challenges

- Exclusivity (channel selection)
- Particle identification
- L/T separations
- Luminosity

Exclusivity: ${}^{1}H(e,e'\pi^{+})n$ or multi-pion production?

- Large c.m. boost in baryon direction
 - hadrons are produced with high momentum at small angles
 - can we distinguish events with an additional π^0 ?

¹H(e, e' π^+)n - Q² and t-dependence of hadrons

- Low -t neutrons never leave the beam pipe a zero-degree detector is needed
 - energy resolution is poor
 - useful angular resolution requires a long flight path
- For high Q², pion detection is required over a large angular range

¹H(e,e' π^+)n - scattered electron kinematics

- Most electrons scatter at small angles, but correspond to low Q²
- High-Q² electrons require detection (and identification) over large angular range

Methods to ensure exclusivity

- Detector as a veto
 - relies on detector hermeticity to reject events with additional particles
 - requires very good (forward) acceptance not easy with large c.m. boost
- Missing mass of baryon (neutron)
 - electron and meson momenta are measured
 - missing mass resolution depends on detector resolution, particle momentum, and available phase space
 - deteriorates rapidly with momentum and c.m. energy
- Kinematic fits
 - detect all three particles
 - forward baryon acceptance limited by magnets sizes and apertures
 - poor resolution (momentum or angle) means no constraint!
 - longitudinal momentum particularly challenging (forward-going π^0 rejection)

M_x Resolution - fixed target

Simulated dM_x^2 distributions for 5 on 50 kinematics

Conclusion: missing mass technique will not guarantee exclusivity in these kinematics

L/T separations in exclusive π + production

Q²=10 GeV², x=0.1, -t=0.1

- Requires special low energies for at least one ϵ point and cannot be done with the standard EIC

Luminosity considerations

- To lower the minimum energy of a high-energy EIC would require a relaxed final focus to fit magnet apertures and could impose space charge limits due to the size of the ring.
- The luminosity penalty in multi-purpose high-energy ring can be a factor of 10 at the maximum energy (250 GeV).
- The luminosity, which is proportional to the ion momentum, could thus be a factor 100 lower at 10% of the maximum energy (25 GeV).
- Is there another way?

An alternative approach

- The luminosity issue can be resolved by using a smaller ion ring for the lower energies.
- The experimental challenges can be addressed with a different choice of kinematics
 - Example: 10 GeV on 20 GeV electron-ion collisions
- A nearly symmetric collider would have the benefits of:
 - Lowest lab momenta for a given s
 - Optimal momentum resolution
 - Good particle identification
 - Improved acceptance

¹H(e, e' π^+)n kinematics

• Large

Conclusion

- Measurements of exclusive reactions face various experimental challenges
- These challenges can be addressed with a different choice of kinematics
- A symmetric collider would offer additional benefits

Backup

Kinematic Reach (Pion Form Factor)

Assumptions:

- **High ε:** 5(*e*⁻) on 50(*p*).
- Low ε proton energies as noted.
- Δε~0.22.
- Scattered electron detection over 4π .
- Recoil neutrons detected at $\theta < 0.35^{\circ}$ with high efficiency.
- Statistical unc: $\Delta \sigma_L / \sigma_L \sim 5\%$
- Systematic unc: $6\%/\Delta\epsilon$.
- Approximately one year at $L=10^{34}$.

Excellent potential to study the QCD transition nearly over the whole range from the strong QCD regime to the hard QCD regime.

Projected uncertainties for Q⁻ⁿ scaling

EIC: Ee=5 GeV, Ep=50 GeV

- Transition region 5-15 GeV² well mapped out even with narrow fixed x and t
 - careful with detector requirements

Low ε data from Jlab12?

• L/T separations at EIC will benefit from Jlab12 measurements

• Low

Thomas Jefferson National Accelerator Facility

¹H(e, e' π^+)n scattered kinematics

• Large

¹H(e, e' π^+)n - scattered electron kinematics

• Most

Thomas Jefferson National Accelerator Facility

