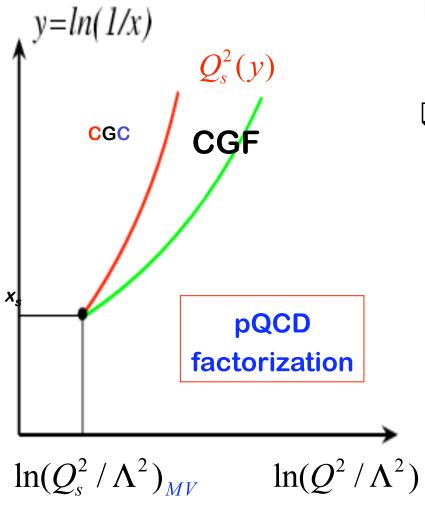
Semi-Inclusive Processes in Electron-Ion Collisions

Jianwei Qiu Iowa State University

Based on work done with Kang, Vitev, ...

EIC Collaboration meeting - eA physics working group Lawrence Berkeley National Laboratory, CA, December 11-13, 2008

Phase diagram of parton densities



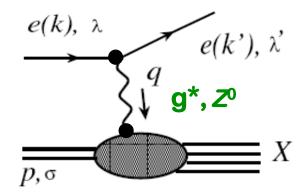
- ☐ Experiments measure cross sections, not PDFs
- □ PDFs are extracted based on
 - **♦** factorization
 - truncation of perturbative expansion
- □ How to probe the boundary between different regions?

Look for where pQCD factorization approach fails

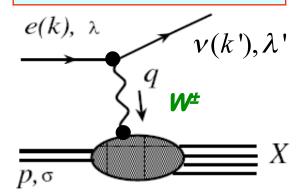
Inclusive DIS in ep and eA Collisions

☐ Inclusive DIS cross section:

Neutral current (NC)



Charged current (CC)



☐ Kinematic variables:

 \Rightarrow 4-momentum transfer: $Q^2 = -q^2 \quad \Rightarrow$ Bjorken variable: $x_B = \frac{Q^2}{2p \cdot q}$

 \Rightarrow Squared CMS energy: $s = (p+k)^2 = \frac{Q^2}{x_B y}$ \Rightarrow Inelasticity: $y = \frac{p \cdot q}{p \cdot k}$

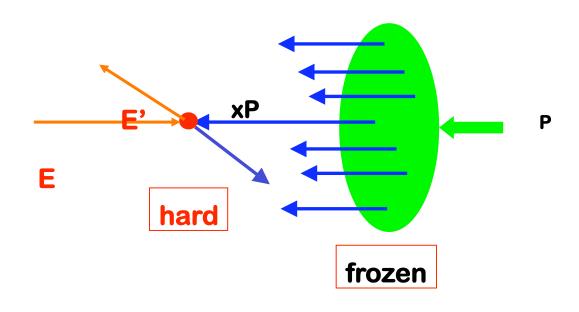
 \Rightarrow Final-state hadronic mass: $W^2 = (p+q)^2 \approx \frac{Q^2}{x_B}(1-x_B)$

☐ Structure functions:

 F_T , F_L or F_1 , F_2 (F_3 for parity violating interaction)

Naïve parton model

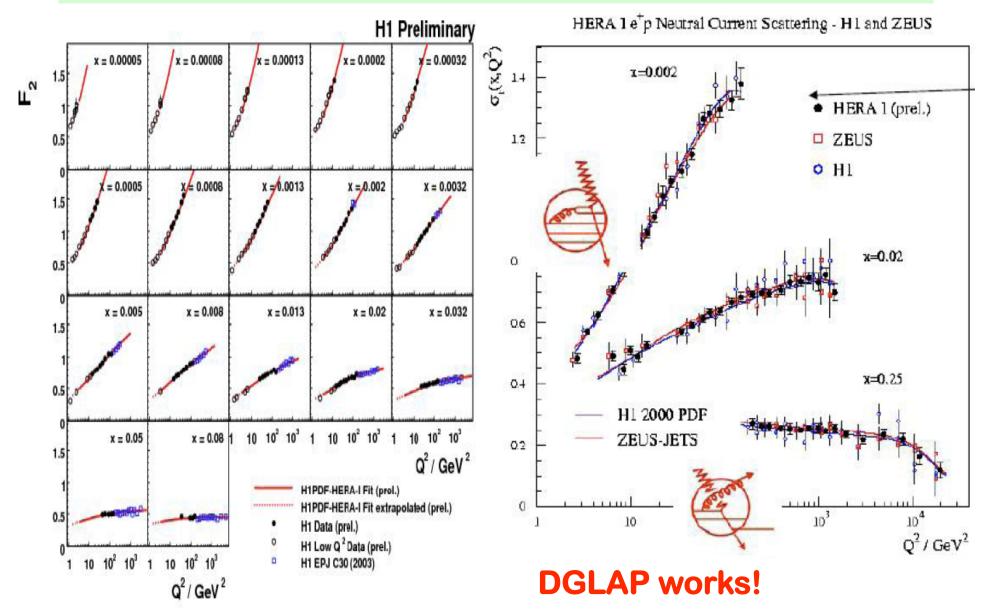
Hard probe - Impulse approximation - Parton model



$$\sigma_{lP}(Q) \approx \int dx f_{q/P}(x) \hat{\sigma}(x,Q)$$

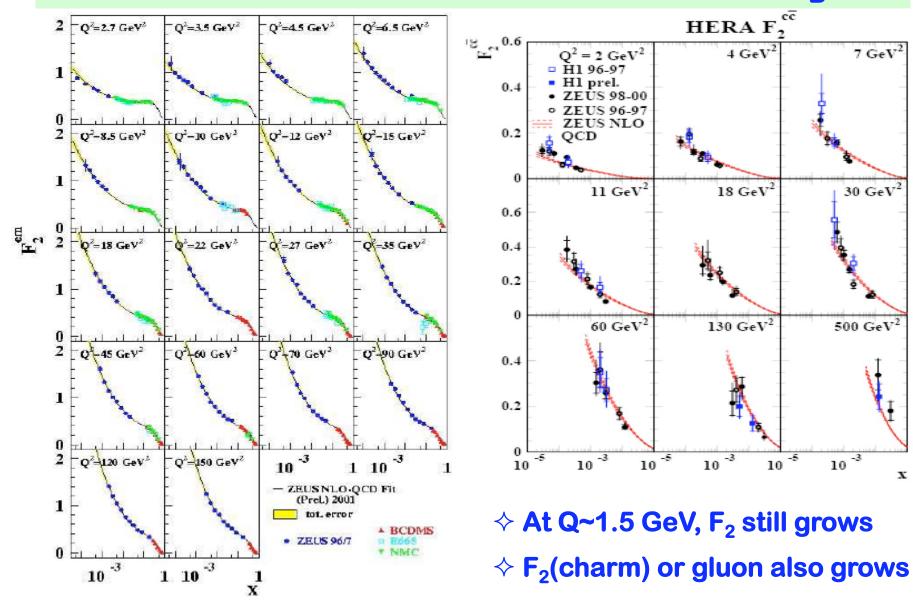
Convolution of two probability functions

Structure Functions as a Function of Q²



December 11, 2008

Structure Functions as a Function of x_B

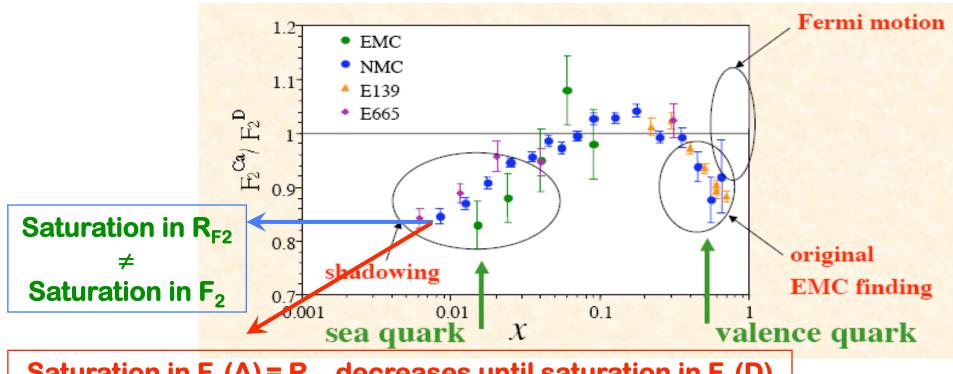


 7 GeV^2

 30 GeV^2

What have we learned from eA collisions?

□ EMC effect, Shadowing and Saturation:



Saturation in $F_2(A) = R_{F_2}$ decreases until saturation in $F_2(D)$

 \Box EIC – R_{F2} as a function of x_B at a fixed Q^2 for various A

Need x_B as small as 10^{-3} at $Q^2=2GeV^2$ to probe the saturation

The Question

Can pQCD calculate the structure functions at small x?

☐ Facts:

- ♦ PQCD cannot calculate parton dynamics at the hadronic scale
- ♦ Inclusive DIS single hard momentum transfer: Q >> 1/fm
- ♦ OPE is expected to work separation of scales Factorization

$$\sigma_{phys}^{h} = \hat{\sigma}_{2}^{i} \otimes [1 + C^{(1,2)}\alpha_{s} + C^{(2,2)}\alpha_{s}^{2} + ...] \otimes T_{2}^{i/h}(x)$$

$$+ \frac{\hat{\sigma}_{4}^{i}}{Q^{2}} \otimes [1 + C^{(1,4)}\alpha_{s} + C^{(2,4)}\alpha_{s}^{2} + ...] \otimes T_{4}^{i/h}(x)$$

$$+ \frac{\hat{\sigma}_{6}^{i}}{Q^{4}} \otimes [1 + C^{(1,6)}\alpha_{s} + C^{(2,6)}\alpha_{s}^{2} + ...] \otimes T_{6}^{i/h}(x)$$

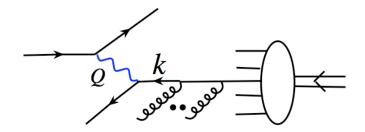
$$+ ...$$
Power corrections

Breakdown:

Collinear factorization fails when parton momentum $k^+ = xp \sim k_T$

Semi-inclusive DIS in ep and eA Collisions

□ Parton's transverse momentum at the hard collision:



Gluon shower: $k_T^2 \propto \Lambda_{\rm QCD}^2 \, \ln(Q^2/\Lambda_{\rm QCD}^2) \, \ln(s/Q^2)$

- \square Single hadron production at p_T :
 - ♦ Hard scale: Q assures a hard collision and pQCD calculation
 - ♦ Soft Scale: p_T probes parton's transverse momentum at the collision point
- **☐** Mean transverse momentum square:

$$\langle q_T^2
angle \equiv \left. \int dq_T^2 \, q_T^2 rac{d\sigma_{A o h}}{dx_B dQ^2 dz dq_T^2}
ight/ rac{d\sigma_{A o h}}{dx_B dQ^2 dz}$$

Kinematics and Cross Section

□ Collision energies:

$$S_{\gamma^*-A} = (q+p)^2 \approx Q^2 \left[\frac{1-x_B}{x_B} \right] \sim \frac{Q^2}{x_B}$$

$$\hat{s}_{\gamma^*-p} = (q+\xi p)^2 \approx Q^2 \left[\frac{\xi}{x_B} - 1 \right] \Rightarrow \xi \approx x_B \left[1 + \frac{\hat{s}_{\gamma^*-p}}{Q^2} \right]$$

- small $x_B \neq$ small parton momentum fraction ξ for semi-inclusive process
- ullet small ξ requires small q_T^2

☐ Factorized cross section:

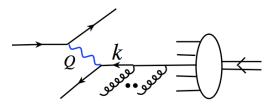
$$rac{d\sigma_{A o h}}{dx_B dQ^2 dz dq_T^2} = \sum_{a,c} \int_z^1 rac{d\eta}{\eta} D_{c o h}(\eta) \int_{x_B}^1 rac{d\xi}{\xi} f_{a/A}(\xi) \left[rac{d\hat{\sigma}_{a o c}}{d\hat{x} dQ^2 d\hat{z} dq_T^2}
ight]$$

with parton level variables:

$$\hat{x} = \frac{Q^2}{2p_a \cdot q} = \frac{x_B}{\xi}, \quad \hat{z} = \frac{p_c \cdot p_a}{q \cdot p_a} = \frac{z}{\eta}$$

Gluon Shower when q_T is small

 \Box When q_T is small, fixed order calculation diverges:

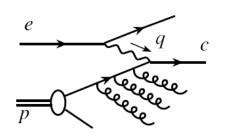


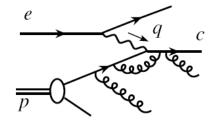
LO:
$$\frac{\alpha_s}{q_T^2}\left[a+b\log(Q^2/q_T^2)\right] \to \infty \ \ {\rm as} \ q_T^2 \to 0$$

initial-state and final-state soft gluon radiations generate

large logarithms:
$$\frac{1}{q_T^2} \alpha_s^n \log^{2n-1}(Q^2/q_T^2)$$

□ QCD resummation:



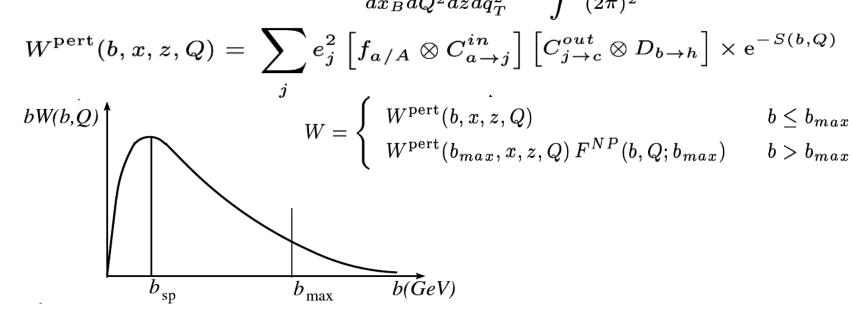


Calculation in the b-space

☐ Resummed x-section:

$$rac{d\sigma_{A
ightarrow h}^{(
m resum)}}{dx_B dQ^2 dz dq_T^2} \propto \int rac{d^2 b}{(2\pi)^2} \, {
m e}^{i ec q_T \cdot ec b} \, W(b,x,z,Q)$$

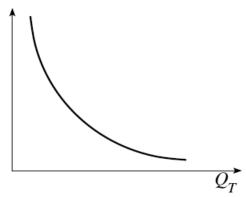
$$W^{ ext{pert}}(b,x,z,Q) = \sum e_j^2 \left[f_{a/A} \otimes C_{a o j}^{in} \right] \left[C_{j o c}^{out} \otimes D_{b o h} \right] imes \mathrm{e}^{-S(b,Q)}$$

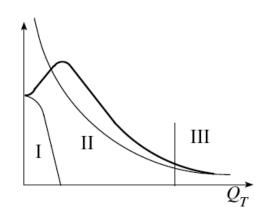


- ☐ Features:
- Sudakov form factor $\rightarrow b_{sp} \propto (\frac{\Lambda_{\rm QCD}}{O})^{\lambda}, \lambda \sim 0.5$
- evolution of $f_{a/A}$ and $D_{c
 ightarrow h}$ also moves b_{sp} smaller $\xi \Rightarrow \mu \frac{\partial}{\partial u} f_{a/A}(\xi) > 0 \Rightarrow \text{lower } b_{sp}$
- parton recombination reduces the evolution \Rightarrow moves b_{sp} to the right \Rightarrow more Gaussian like

Resummed Q_T Distribution

☐ Remove the divergence:





□ Features:

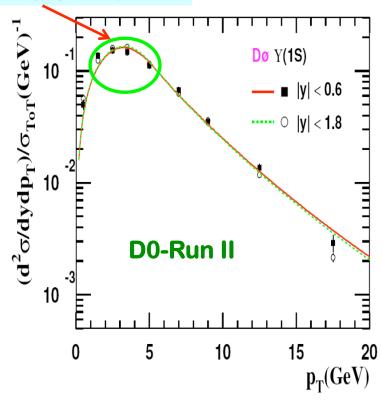
- (I): dominated by intrinsic k_T (Gaussian type)
- (II): pQCD soft-gluon resummation ($q_T \leq Q$)
- (III): pQCD fixed order calculation ($q_T \sim Q$)
- relative size of three regions depend on ${\cal Q}^2$ and ${\cal S}$
- large Q^2 and large $S \Rightarrow$ smaller region (I)
- smaller $Q^2 \to \text{smaller logs} \to \text{smaller region (II)}$

Works for heavy boson production

□ Upsilon at Tevatron:

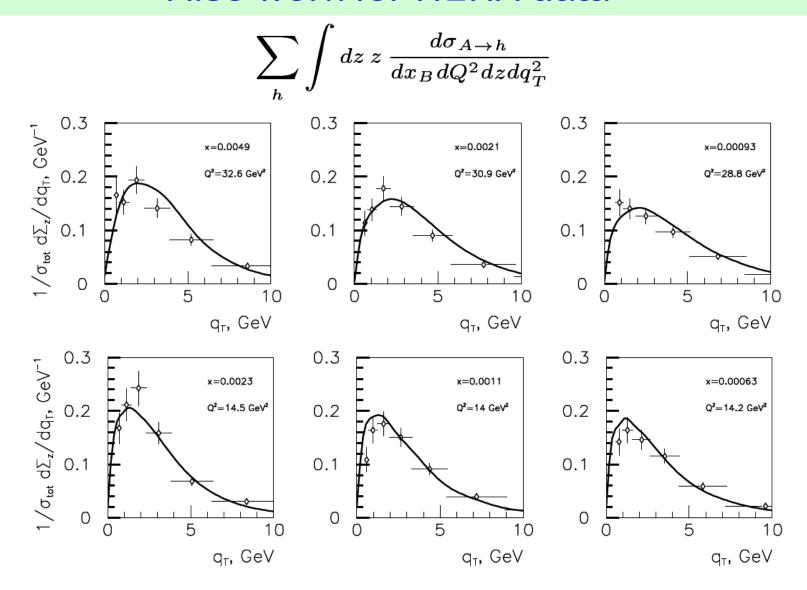
 $\frac{1}{10} = \frac{1}{10} = \frac{1}{10}$

Dominated by perturbative small-b contribution in its Fourier conjugate space



☐ Works better for W/Z, also work for Drell-Yan, ...

Also work for HERA data

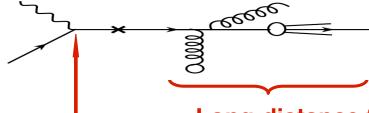


Nadolsky, et al, 1999, 2001

Broadening in Cold Nuclear Matter

☐ Induced radiation – energy lose:

Guo & Wang PRL 2000, ... Wang & Wang, PRL 2002, ...



Long-distance fragmentation

Short-distance hard scattering

□ Transverse momentum broadening:

$$\Delta \langle q_T^2 \rangle \equiv \langle q_T^2 \rangle^{hA} - \langle q_T^2 \rangle^{hN} = \left(\frac{4\pi^2 \alpha_s}{3}\right) \lambda^2 A^{1/3}$$

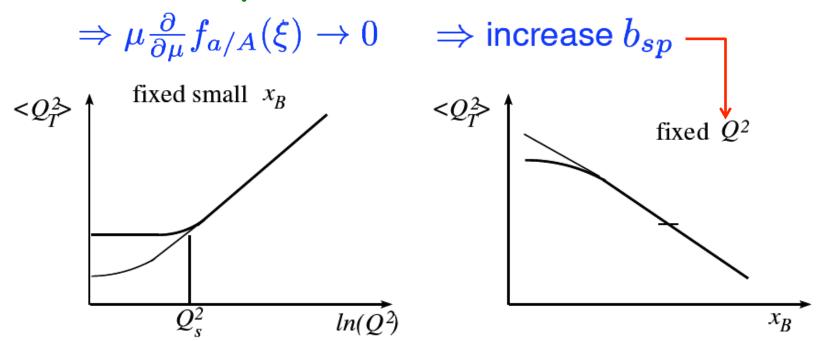
Guo, PRD 1998

- increases the effective "intrinsic k_T "
- reduces the phase space for soft-gluon shower
- \Rightarrow broadening the q_T distribution

Probe the Saturation

For a fixed A!

- \square At small x_B (large S_{γ^*-A}), large phase space for shower Q_T -distribution could be calculable at low Q_T
- ☐ Saturation stops the evolution:



Same measurement for a larger A!

Summary

- □ Semi-inclusive DIS in ep and eA provide clean multiple scale observables
 - probe parton's transverse momentum scale at hard collision
- \square pQCD resummation technique should be valid for calculating the q_T distribution if x_B is small (S_{Y^*-A} Large)

Without saturation, $\langle q_T^2 \rangle$ grows as $\log(1/x_B)$ increases, due to the phase space increases and large evolution rate of PDF at small ξ

With saturation, PDF stop growing, $\langle q_T^2 \rangle$ deviates from the pQCD resummed prediction

☐ A good place to see saturation:

Decreases x_B while keeping a moderate Q²

Backup slides