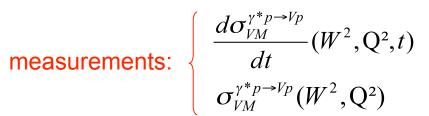

Hard Diffraction in Deep Inelastic Scattering at small x

Cyrille Marquet

Columbia University

Diffractive processes in DIS

Inclusive diffraction in DIS

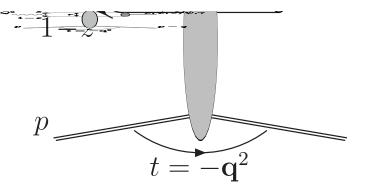

the measured cross-section

$$\frac{d^4 \sigma^{eh \to eXh}}{dx dQ^2 d\beta dt} = \frac{4\pi \alpha_{em}^2}{\beta^2 Q^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2^{D,4}(x, Q^2, \beta, t) - \frac{y^2}{2} F_L^{D,4}(x, Q^2, \beta, t) \right]$$

Less inclusive diffraction

exclusive diffraction ۲

vector meson production deeply virtual Compton scattering (DVCS)



determination of the diffractive slope B

$$\frac{d\sigma_{VM}^{\gamma^*p \to Vp}}{dt} \propto e^{B(x, Q^2, M_V)t}$$

semi inclusive diffraction ۲

diffractive jets, hadron production

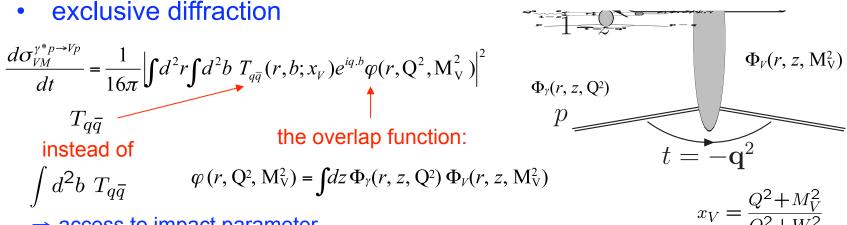
 k_{\perp},y

The dipole picture and saturation

The dipole factorization

dipole-hadron cross-section

 $T_{q\bar{q}}$


 $\overline{\psi(z,\mathbf{r};Q^2)}$

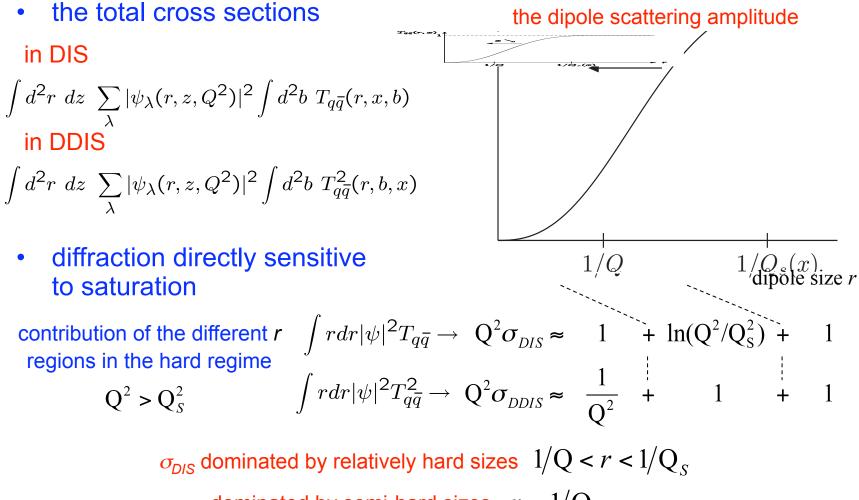
• inclusive DIS

$$\sigma_{tot}^{\gamma^* p \to X} = 2 \int d^2 r \, dz \, \sum_{\lambda} |\psi_{\lambda}(r, z, Q^2)|^2 \int d^2 b \, T_{q\bar{q}}(r, x, b)$$

overlap of $\gamma^* \rightarrow q \bar{\bar{q}}$ splitting functions

at small *x*, the dipole cross section is comparable to that of a pion, even though $r \sim 1/Q << 1/\Lambda_{QCD}$

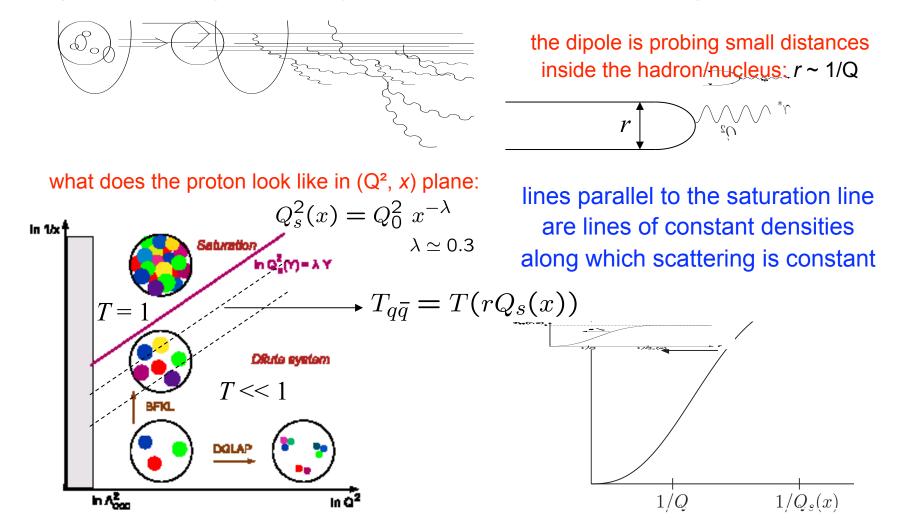
 \Rightarrow access to impact parameter


The dipole picture for F_2^D

the diffractive final state is decomposed into $q\bar{q}, q\bar{q}g, \ldots$ contributions

• the $q\bar{q}$ contribution

double differential cross-section Fourier transform to M_{χ}^2 comes from (proportional to the structure function) $\kappa_f^2 = z(1-z)Q^2(1-\beta)/\beta - m_f^2$ $M_X^2 > 4m_f^2$ for a given photon polarization: $\frac{d\sigma_{\lambda}^{\gamma^* p \to X p}}{d\beta \ dt}(\beta, x_{\mathbb{P}}, Q^2, t) = \frac{Q^2}{4\beta^2} \sum_{f} \int \frac{d^2 r}{2\pi} \int \frac{d^2 r'}{2\pi} \int_{0}^{1} dz z (1-z) \Theta(\kappa_f^2) \ e^{i\kappa_f \cdot (\mathbf{r}' - \mathbf{r})}$ $\phi^{f}_{\lambda}(z,\mathbf{r},\mathbf{r}';Q^{2}) \int d^{2}b \, d^{2}b' \, e^{i\Delta \cdot (\mathbf{b}'-\mathbf{b})} T_{q\bar{q}}(\mathbf{r},\mathbf{b};x_{\mathbb{P}}) T_{q\bar{q}}(\mathbf{r}',\mathbf{b}';x_{\mathbb{P}})$ overlap of Fourier transform to t wavefunctions dipole amplitudes $t = -\Delta^2$ higher Fock states • $T_{q\bar{q}}$ contribute to F_2^D but also to semi inclusive diffraction also taken into account with dipoles


Hard diffraction and saturation

 $\sigma_{\rm DDIS}$ dominated by semi-hard sizes $r \sim 1/Q_s$

What about geometric scaling

geometric scaling can be easily understood as a consequence of large parton densities

What we learned from HERA

Inclusive DIS

Soyez (2007)

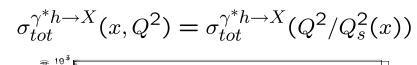
 10^{2}

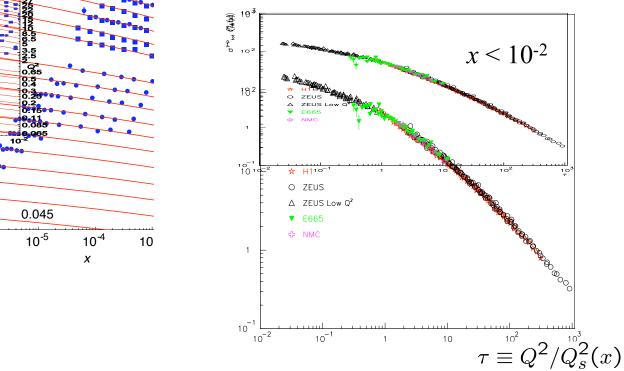
10³

10²

F₂ (x1.3") _____

10-1

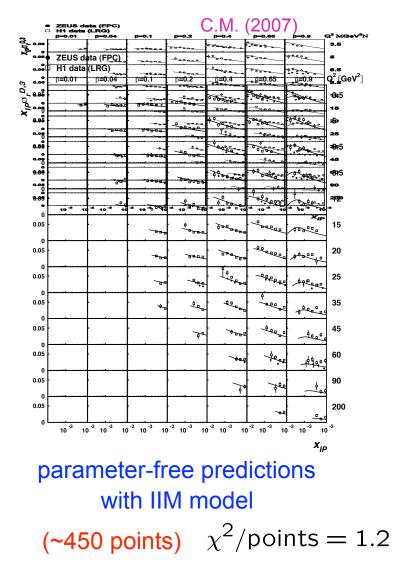

0.045


10⁻⁴

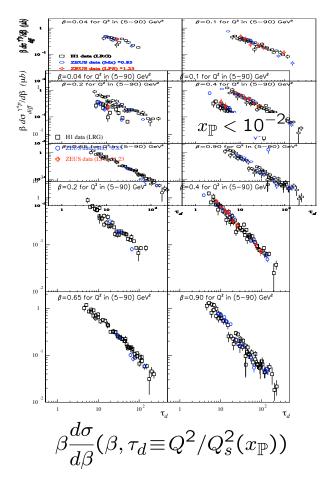
10⁻¹

10⁻⁶

Stasto, Golec-Biernat and Kwiecinski (2001)



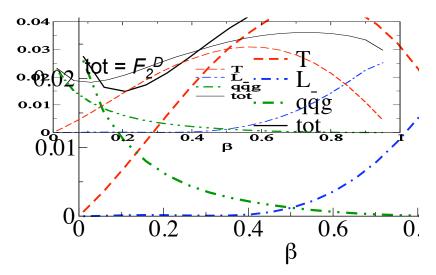
geometric scaling seen in the data, but scaling violations are essential for a good fit


IIM fit (~250 points) χ^2 /dof = 0.9

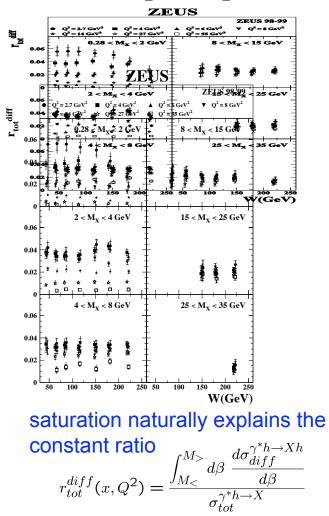
Inclusive Diffraction

C.M. and Schoeffel (2006)

at fixed eta , the scaling variable is $\,Q^2/Q_s^2(x_{\mathbb P})\,$



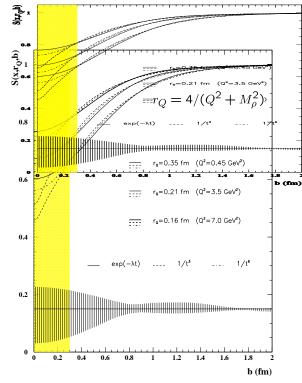
Important features


• the β dependence

contributions of the different final states to the diffractive structure function:

 $x_{\mathbb{P}}F_2^{D,3}(\beta, Q^2 = 5 \text{ GeV}^2, x_{\mathbb{P}} = 0.001)$

at small β : quark-antiquark-gluon at intermediate β : quark-antiquark (T) at large β : quark-antiquark (L) • the ratio $F_2^{D,A} / F_2^A$



Exclusive diffraction

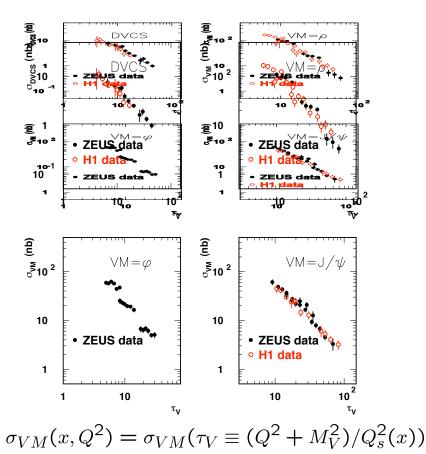
Munier, Stasto and Mueller (2001)

the scattering probability (S=1-T) is extracted from the ρ data

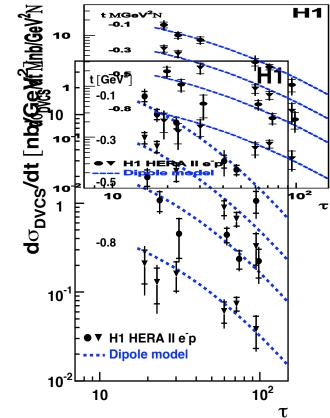

 $S(1/r \approx 1 \text{Gev}, b \approx 0, x \approx 5.10^{-4}) \approx 0.6$

 \Rightarrow HERA is entering the saturation regime

- success of the dipole models
 - t-CGC χ^2 /points = 1.2 C.M., Peschanski and Soyez (2007)
- b-CGC appears to work well also but no χ^2 given


Kowalski, Motyka and Watt (2006)

predictions for DVCS are available


Geometric scaling

for the total VM cross-section

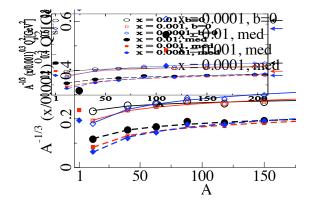
C.M. and Schoeffel (2006)

scaling at non zero transfer
predicted C.M., Peschanski and Soyez (2005)
checked H1 collaboration (2008)

Hard diffraction off nuclei

From protons to nuclei

• the dipole-nucleus cross-section Kowalski and Teaney (2003) $T^{p}_{q\bar{q}}(r,b,x) = 1 - e^{-f(r,x,b)} \Rightarrow T^{A}_{q\bar{q}}(r,b,x) = 1 - e^{-\sum_{i} f(r,x,b-b_{i})}$


averaged with the Woods-Saxon distribution $T_A(\{b_i\})$ — position of the nucleons

 $\langle O \rangle = \int \prod_{i} d^2 b_i T_A(b_i) \ O(\{b_i\}) \qquad T_A(b) = C \int dz \left\{ 1 + \exp\left[\left(\sqrt{b^2 + z^2} - R_A \right) / d \right] \right\}^{-1}$

• the Woods-Saxon averaging averaging $T_{q\bar{q}}^{A}$ allows to evaluate the saturation scale Kowalski, Lappi and Venugopalan (2007)

in diffraction, averaging at the level of the amplitude corresponds to a final state where the nucleus is intact

averaging at the cross-section level allows the breakup of the nucleus into nucleons

 Q_s^2 increases slightly faster than $A^{1/3}$

The ratio $F_2^{D,A} / F_2^{D,p}$

- for each contribution
- as a function of β :

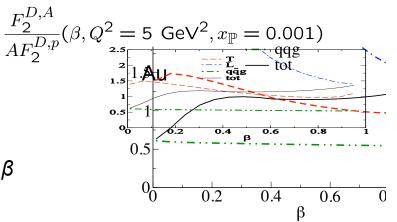
quark-antiquark-gluon < 1 and ~ const.

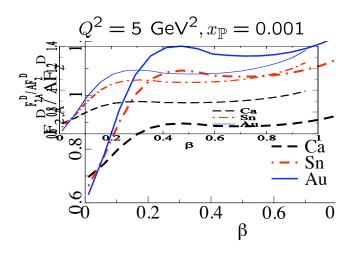
quark-antiquark (T) > 1 and \sim const.

quark-antiquark (L) > 1 and decreases with β

the decrease with (decreasing β) \mathcal{F}_L^D is slower for a nucleus than for a proton

• nuclear effects


enhancement at large β


the quark-antiquark contribution dominates the ratio is almost constant and decreases with A

suppression at small β

the quark-antiquark-gluon contribution dominates

Kowalski, Lappi, C.M. and Venugopalan (2008)

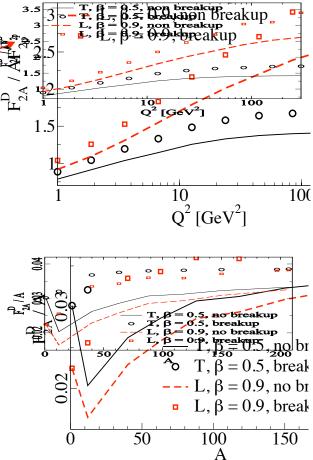
Coherent vs Incoherent diffraction

In inclusive diffraction

in this study the breakup of the nucleus into nucleons is allowed

Kowalski, Lappi, C.M. and Venugopalan (2008)

• as a function of Q²


the quark-antiquark contributions for β values at which they dominate

the decrease (with increasing Q^2) of the diffractive cross-section is slower for a nucleus than for a proton

• as a function of A

for a gold nucleus, the diffractive structure function is 15 % bigger when allowing breakup into nucleons

the proportion of incoherent diffraction decreases with A

In semi-inclusive diffraction

coherent case $eA \rightarrow XhA$ studied previoulsy, incoherent case recently adressed Golec-Biernat and C.M. (2005) Tuchin (2008) $r=1 \text{ GeV}^{-1}, \sqrt{s} = 200 \text{ GeV}$ as a function of p_T of the hadron ۲ 0.4A=200 A=100 results are for pA collisions 0.3 A = 20doable at RHIC ? but the eA case is very similar $\begin{array}{c|c} \alpha & \alpha \\ \eta & \alpha \\ \eta & \sigma \\ \eta & \sigma \end{array} = 0.2$ 0.1 the proportion of incoherent diffraction decreases with A 0.0 2 8 10 0 4 6 nuclear modifications • k_T (GeV) antishadowing of coherent diffraction shadowing of incoherent diffraction $r=1 \text{ GeV}^{-1}, \sqrt{s} = 200 \text{ GeV}, d=1$ $r=1 \text{ GeV}^{-1}, \sqrt{s} = 200 \text{ GeV}$ 3.0 3.0 v=0 = y=02.5 2.5 - v=1 2.0 2.0 y=2 a 2 1.5 v=3 <u>ا</u> 1.5 ک 1.0 1.0

0.5

0.0

8

6

 k_T (GeV)

10

0.5

0.0└─ 0

2

4

 k_T (GeV)

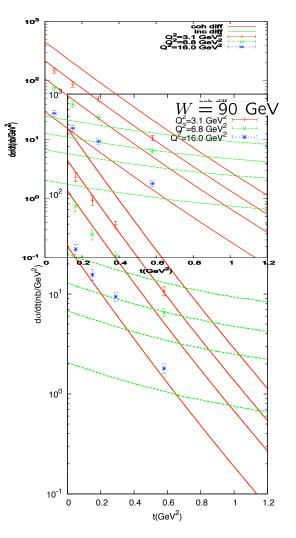
6

8

10

In exclusive diffraction

Dominguez, C.M. and Wu, in progress


- in this study ($eA \to J/\Psi A$) the breakup of the nucleus into pions is allowed
- as a function of t

coh diff : the nucleus undergoes elastic scattering inc diff : the nucleons undergo inelastic scattering as a illustration, the figure is for ep collisions

incoherent diffraction dominates at large t

In the eA case, there will be three regimes:

coherent diffraction \rightarrow steep exp. fall at small |t| breakup into nucleons \rightarrow slower exp. fall at 0.05 < -t < 0.7 GeV² incoherent diffraction \rightarrow power-law tail at large |t|

Conclusions

 large parton densities in hadrons/nuclei are probed at small-x and large A

saturation effect are characterized by $Q_s^2 \simeq \Lambda_{QCD}^2 (A/x)^{1/3}$

• diffractive observables at HERA provide several hints that large gluon densities are being probed

geometric scaling for inclusive, diffractive, exclusive processes constant inclusive over diffractive cross-section ratio large dipole scattering amplitude close to 0.5

• exploring the saturation regime will be possible with a highenergy electron-ion collider

diffraction is an important part of the physics program

ongoing studies of incoherent vs coherent diffraction