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Diffractive processes in DIS 



Inclusive diffraction in DIS 
lµ

l′µ

e−

e−

C

Qµ

γ∗

W 2

k 

k’ 

p 

lµ

l′µ

e−

e− γ∗

C

Qµ

Q′µ

C

M2
X

gap

k 

k’ 

p 
p’ 

when the hadron 
remains intact rapidity gap 
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•  the measured cross-section 

 momentum transfer 
t = (p-p’)2 < 0 



Less inclusive diffraction 
•  exclusive diffraction 
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measurements: 

determination of the diffractive slope B 

•  semi inclusive diffraction 

diffractive jets, hadron production 

vector meson production 
deeply virtual Compton scattering (DVCS) 



The dipole picture and 
saturation 
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The dipole factorization 

dipole-hadron cross-section 

•  inclusive DIS 

at small x, the dipole cross section is comparable 
to that of a pion, even though r ~ 1/Q << 1/ΛQCD 

overlap of 
splitting functions 

•  exclusive diffraction 

the overlap function: instead of  
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⇒ access to impact parameter 



•  the      contribution 

The dipole picture for F2
D 

the diffractive final state is decomposed into          contributions 
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comes from Fourier transform to MX
2  

overlap of 
wavefunctions Fourier transform to t  dipole amplitudes 

double differential cross-section 
(proportional to the structure function) 

for a given photon polarization: 

also taken into account with dipoles 

contribute to F2
D but also to 

semi inclusive diffraction 

•  higher Fock states 



Hard diffraction and saturation 
x ↘

Tqq̄(r, x)
1
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dipole size r 

the dipole scattering amplitude •  the total cross sections 
in DIS 

in DDIS 

contribution of the different r 
regions in the hard regime 

σDIS dominated by relatively hard sizes 

σDDIS dominated by semi-hard sizes 

•  diffraction directly sensitive 
to saturation 
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the dipole is probing small distances 
inside the hadron/nucleus: r ~ 1/Q  

what does the proton look like in (Q², x) plane: 

What about geometric scaling 
geometric scaling can be easily understood as a consequence of large parton densities 
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lines parallel to the saturation line 
are lines of constant densities 

along which scattering is constant 

T = 1 

T << 1 



What we learned from HERA 



Inclusive DIS 

geometric scaling seen in the data, but 
scaling violations are essential for a good fit 

Stasto, Golec-Biernat and Kwiecinski (2001) 
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Inclusive Diffraction 

(~450 points) 
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parameter-free predictions 
with IIM model 

at fixed β , the scaling variable is 

C.M. and Schoeffel (2006) 
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Important features 
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contributions of the different final states 
to the diffractive structure function: 

at small β : quark-antiquark-gluon 
at intermediate β : quark-antiquark (T) 

at large β : quark-antiquark (L) 

•  the β dependence 
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saturation naturally explains the 
constant ratio 

•  the ratio F2
D,A / F2 A 
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⇒ HERA is entering the saturation regime 

the scattering probability (S=1-T ) 
is extracted from the ρ data 

S(1/r ≈1Gev, b ≈ 0, x ≈ 5.10-4) ≈ 0.6 

Exclusive diffraction 

rho J/Psi 

•  success of the dipole models 
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b-CGC  appears to work well 
 also but no      given 

predictions for DVCS are available 

C.M., Peschanski and Soyez (2007) 

Kowalski, Motyka and Watt (2006) 



•  for the total VM cross-section 

Geometric scaling 

C.M. and Schoeffel (2006) 
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•  scaling at non zero transfer 
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Hard diffraction off nuclei 



From protons to nuclei 

averaged with the Woods-Saxon distribution 

⇒ 

position of the nucleons 

•  the dipole-nucleus cross-section Kowalski and Teaney (2003) 

in diffraction, averaging at the level of the amplitude 
corresponds to a final state where the nucleus is intact 

averaging at the cross-section level 
allows the breakup of the nucleus into nucleons 

•  the Woods-Saxon averaging 
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Kowalski, Lappi and Venugopalan (2007) 

averaging        allows to evaluate the saturation scale 

  increases slightly 
faster than 



The ratio F2
D,A / F2

 D,p 
Kowalski, Lappi, C.M. and Venugopalan (2008) 

quark-antiquark-gluon 

quark-antiquark (T) 

quark-antiquark (L) 

> 1 and  ~ const. 

> 1 and decreases with β 

< 1 and  ~ const. 
Au 

the decrease with (decreasing β) of         
is slower for a nucleus than for a proton 

as a function of β : 
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•  for each contribution 

the quark-antiquark-gluon contribution dominates 

•  nuclear effects 
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enhancement at large β 

the quark-antiquark contribution dominates 
the ratio is almost constant and decreases with A 

suppression at small β 



Coherent vs Incoherent 
diffraction 



In inclusive diffraction 
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the quark-antiquark contributions 
for β values at which they dominate 

the decrease (with increasing Q2) of the diffractive 
cross-section is slower for a nucleus than for a proton 

Kowalski, Lappi, C.M. and Venugopalan (2008) 

•  as a function of Q2 

•  as a function of A 

in this study the breakup of the nucleus into nucleons is allowed 

for a gold nucleus, the diffractive structure function 
is 15 % bigger when allowing breakup into nucleons 

the proportion of incoherent diffraction decreases with A 



•  as a function of pT of the hadron 

In semi-inclusive diffraction 
Golec-Biernat and C.M. (2005) Tuchin (2008) 

coherent case    studied previoulsy, incoherent case recently adressed 

results are for pA collisions 
but the eA case is very similar 

•  nuclear modifications 
antishadowing of coherent diffraction         shadowing of incoherent diffraction 

doable at RHIC ? 

the proportion of incoherent diffraction decreases with A 



In exclusive diffraction 
Dominguez, C.M. and Wu, in progress 

•  as a function of t 

10
-1

10
0

10
1

10
2

10
3

 0  0.2  0.4  0.6  0.8  1  1.2

d
!

/d
t(

n
b

/G
e

V
2
)

t(GeV
2
)

coh diff
inc diff

Q
2
=3.1 GeV

2

Q
2
=6.8 GeV

2

Q
2
=16.0 GeV

2

in this study (   ) the breakup 
of the nucleus into pions is allowed 

as a illustration, the figure is for ep collisions 

coh diff : the nucleus undergoes elastic scattering 
inc diff : the nucleons undergo inelastic scattering 

incoherent diffraction dominates at large t 

coherent diffraction 
→ steep exp. fall at small |t| 
breakup into nucleons 
→ slower exp. fall at 0.05 < -t < 0.7 GeV2 

incoherent diffraction 
→ power-law tail at large |t| 

In the eA case, there will be three regimes: 



Conclusions 
•  large parton densities in hadrons/nuclei are probed at small-x 

and large A 

saturation effect are characterized by  

•  diffractive observables at HERA provide several hints that 
large gluon densities are being probed 

geometric scaling for inclusive, diffractive, exclusive processes 
constant inclusive over diffractive cross-section ratio 
large dipole scattering amplitude close to 0.5 

•  exploring the saturation regime will be possible with a high-
energy electron-ion collider 

diffraction is an important part of the physics program 

•  ongoing studies of incoherent vs coherent diffraction 


