
eRHIC and MEeIC parameters and layouts

V.Ptitsyn

eRHIC and MEeIC

- In both designs the ions (or protons) circulate in the existing RHIC ring.
 - eRHIC: 3-20 (30) GeV electron energy.
 - MEeIC, Medium Energy eIC: 2-4 GeV electron energy
- In both designs the ions (or protons) circulate in the existing RHIC ring.
 - eRHIC : completely new IR design (and magnets) even for ions
 - MEeIC: should be based on the present IR scheme (and magnets) for ions.
- MEeIC is considered as first stage for eRHIC. Major components have to be the same.

ERL-based eRHIC Design

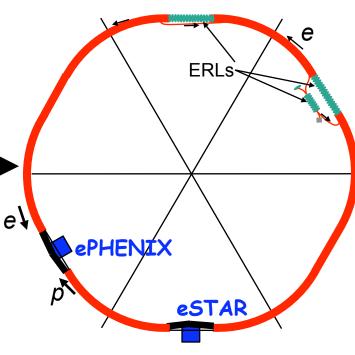
- 10 GeV electron design energy.
 Possible upgrade to 20 GeV by doubling main linac length.
- 5 recirculation passes (4 of them in the RHIC tunnel)
- Multiple electron-hadron interaction points (IPs) and detectors;
- Full polarization transparency at all energies for the electron beam;
- Ability to take full advantage of transverse cooling of the hadron beams;
- Possible options to include polarized positrons: compact storage ring; compton backscattered; undulator-based. Though at lower luminosity.

Other design options

Under consideration also:

➢ Medium Energy EIC at RHIC (MEeIC)

Electron energy up to 2-4 GeV. Acceleration done by an ERL linac placed in the RHIC tunnel. It can serve as first stage for following higher electron energy machine. Luminosity $\sim 10^{32}$ cm⁻²s⁻¹ (without cooling)


≻ High energy (up to 20-30 GeV) ERL-based design with all accelerating linacs and recirculation passes placed in the RHIC tunnel.
 Considerable cost saving design solution.

Luminosity exceeds 10³³ cm⁻²s⁻¹

▶Ring-ring design option.

Backup design solution which uses electron storage ring. See eRHIC ZDR for more details.

The average luminosity is at 10³² cm⁻²s⁻¹ level limited by beam-beam effects.

ERL-based eRHIC Parameters: e-p mode

	High energy setup		Low energy setup	
	р	e	р	e
Energy, GeV	250	10	50	3
Number of bunches	166		166	
Bunch spacing, ns	71	71	71	71
Bunch intensity, 10 ¹¹	2	1.2	2	1.2
Beam current, mA	420	260	420	260
Normalized 95% emittance, π mm.mrad	6	460	6	570
Rms emittance, nm	3.8	4	19	16.5
β*, x/y, cm	26	25	26	30
Beam-beam parameters, x/y	0.015	0.59	0.015	0.47
Rms bunch length, cm	20	1	20	1
Polarization, %	70	80	70	80
Peak Luminosity, 1.e33 cm ⁻² s ⁻¹	2.6		0.53	
Aver.Luminosity, 1.e33 cm ⁻² s ⁻¹	0.87		0.1	18
Luminosity integral /week, pb ⁻¹	530		10)5

BRUUKHAVEN NATIONAL LABORATORY

ERL-based eRHIC Parameters: e-p mode

	High ener	rgy setup	Low ener	rgy setup
	р	е	р	e
Energy, GeV	250	10	50	3
Number of bunches	166		166	
Bunch spacing, ns	71	71	71	71
Bunch intensity, 10 ¹¹	2 420	1.2 260	2	1.2 260 570
Beam current, mA			420	
Normalized 95% emittance, π mm.mrad	6	460	6	
Rms emittance, nnIf effective high energy the and electron beam current luminosity.				
Beam-beam parameters, x/y	0.015	0.59	0.015	0.47
Rms bunch length, cm	20	1	20	1 80
Polarization, %	70	80	70	
Peak Luminosity, 1.e33 cm ⁻² s ⁻¹	2.	2.6		53
Aver.Luminosity, 1.e33 cm ⁻² s ⁻¹	0.8	0.87		18
		530		
Luminosity integral /week, pb ⁻¹	53	30	10	05

NATIONAL LABORATORY

U.S. DEPARTMENT OF ENERGY

ERL-based eRHIC Parameters: e-Au mode

	High energy setup		Low energy setup	
	Au	e	Au	e
Energy, GeV	100	10	50	3
Number of bunches	166		166	
Bunch spacing, ns	71	71	71	71
Bunch intensity, 10 ¹¹	1.1	1.2	1.1	1.2
Beam current, mA	180	260	180	260
Normalized 95% emittance, π mm.mrad	2.4	460	2.4	270
Rms emittance, nm	3.7	3.8	7.5	7.8
β*, x/y, cm	26	25	26	25
Beam-beam parameters, x/y	0.015	0.26	0.015	0.43
Rms bunch length, cm	20	1	20	1
Polarization, %	0	0	0	0
Peak e-nucleon luminosity, 1.e33 cm ⁻² s ⁻¹	2.9		1.5	
Average e-nucleon luminosity, 1.e33 cm ⁻² s ⁻¹	1.0		0.5	
Luminosity integral /week, pb ⁻¹	580		290	

NATIONAL LABORATORY

Б

Main R&D Items

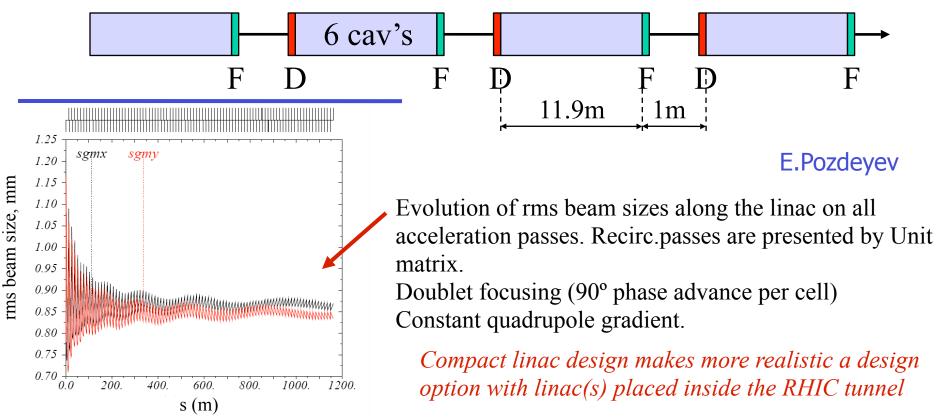
•Electron beam R&D for ERL-based design:

- High intensity polarized electron source
 - Development of large cathode guns with existing current densities $\sim 50~mA/cm^2$ with good cathode lifetime.
- Energy recovery technology for high power beams
 - multicavity cryomodule development; high power beam ERL, BNL ERL test facility; loss protection; instabilites.
- Development of compact recirculation loop magnets
 - Design, build and test a prototype of a small gap magnet and its vacuum chamber.
- Beam-beam effects: e-beam disruption

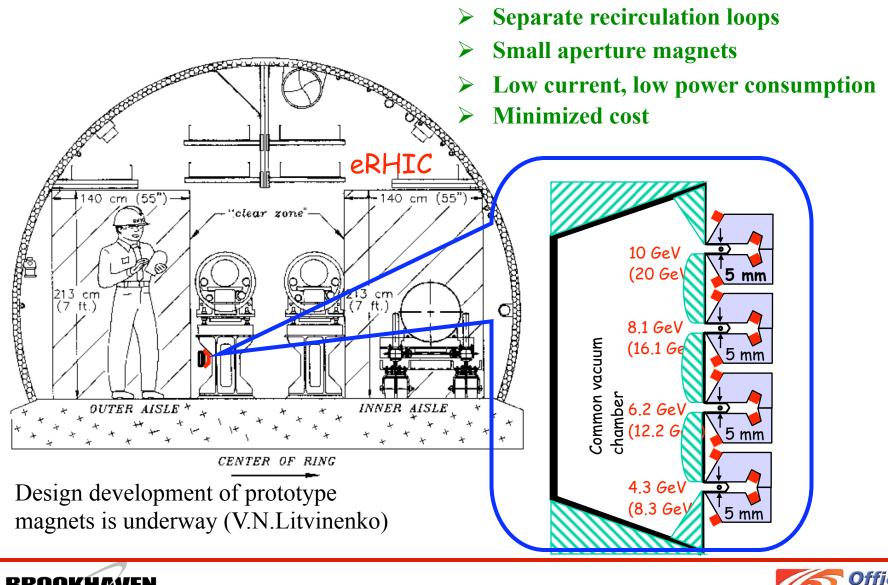
•Main R&D items for ion beam:

- Beam-beam effects: electron pinch effect; the kink instability ...
- Polarized ³He acceleration
- 166 bunches

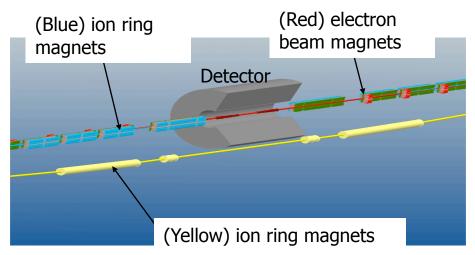
•General EIC R&D item:

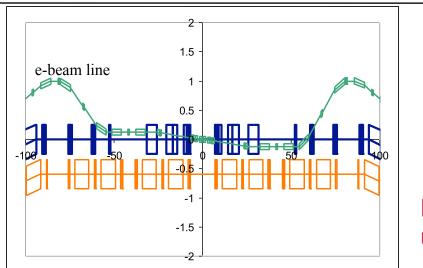

- Proof of principle of the coherent electron cooling

Compact linac design


Increased number of 700MHz cavities inside one cryostat to 6 cavities. 3rd harmonic cavities (2 per cryostat) for the momentum spread minimization. Cavity gradient: 19.5 Mev/m; Average acceleration rate: 8.2 MeV/m; Total length of 1.9 GeV linac: 232m (instead of ~360m in the previous design).

NATIONAL LABORATORY


Recirculation passes



NATIONAL LABORATORY

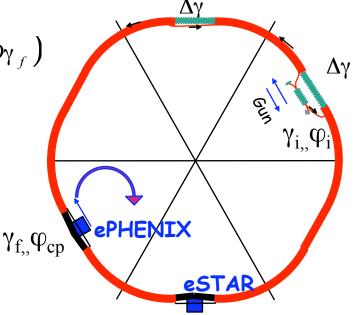
Interaction Region Design

Present IR design features:

- > No crossing angle at the IP
- Detector integrated dipole: dipole field superimposed on detector solenoid.
- > No parasitic collisions.
- Round beam collision geometry with matched sizes of electron and ion beams.
- Synchrotron radiation emitted by electrons does not hit surfaces in the detector region.
- Blue ion ring and electron ring magnets are warm.
- First quadrupoles (electron beam) are at 3m from the IP
- > Yellow ion ring makes 3m vertical excursion.

HERA type half quadrupole used for proton beam focusing

Electron polarization in ERL eRHIC

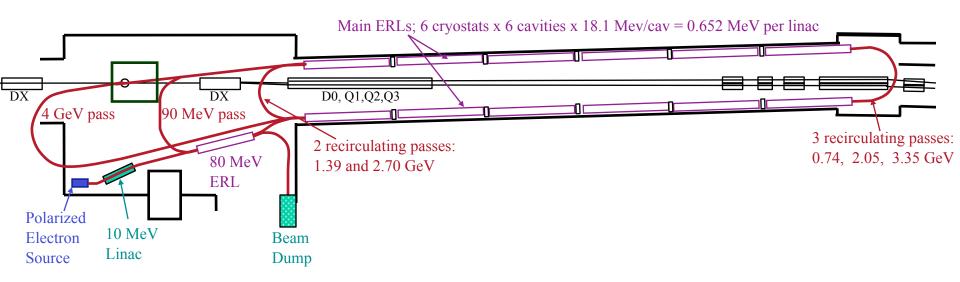

- No problem with depolarizing resonances
- Spin orientation control at the collision point:
 - Spin rotators after the electron source (Wien filter, solenoid)
 - Slight adjustment of energy gain in main and pre-accelerator linacs (keeping the final energy constant) (*V.N.Litvinenko*) $\Delta\gamma$

$$\varphi_{cp} + k\pi = \varphi_i + 2\pi a \left(A\gamma_i + B\Delta\gamma\right) = \varphi_i + 2\pi a \left(C\gamma_i + D\gamma_f\right)$$

a is anomalous magnetic moment A,B,C,D are constants depending on general configuration: location of linacs and collision point, number of recirculation passes (n).

Variation of pre-accelerator linac energy:

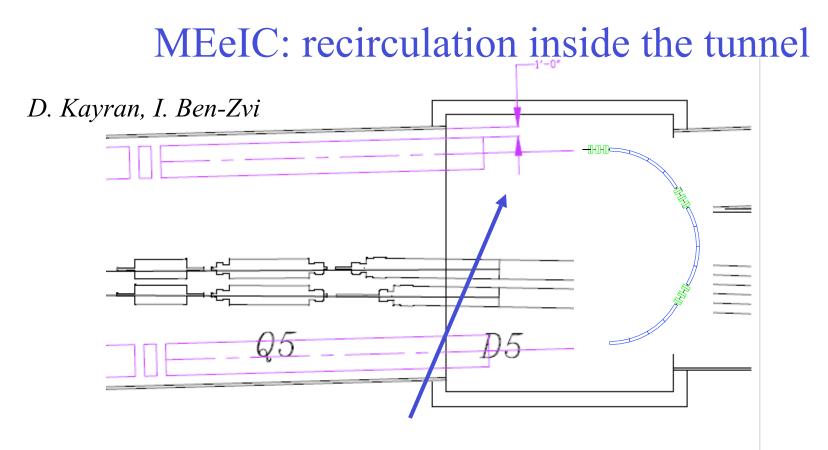
$$\delta E_{i\max} = \pm 37 \quad MeV \quad \lor n = 5$$



MEeIC design development

- Goal: detailed technical design report before the next EIC Collaboration meeting (April-May 2009)
- Design developments so far:
 - General layout and parameters
 - Recirculating pass optics
 - Bunch length and peak current issues: cavity wakes, CSR
 - Longitudinal dynamics
 - Beam-beam effects (Y.Hao's presentation)
 - IR design issues (J.Beebe-Wang's and C.Montag's presentations)

MEeIC Layout Recirculating pass energies are shown for 4 GeV top energy



MEEIC parameters for e-p collisions

	not cooled		pre-cooled		high energy cooling	
	р	e	e p e		р	e
Energy, GeV	250	4	250	4	250	4
Number of bunches	111		111		111	
Bunch intensity, 10 ¹¹	2.0	0.31	2.0	0.31	2.0	0.31
Bunch charge, nC	32	5	32	5	32	5
Normalized emittance, 1e-6 m, 95% for p / rms for e	15	73	6	29	1.5	7.3
rms emittance, nm	9.4	9.4	3.8	3.8	0.94	0.94
beta*, cm	50	50	50	50	50	50
rms bunch length, cm	20	0.2	20	0.2	5	0.2
beam-beam for p /disruption for e	1.5E-03	3.1	3.8E-03	7.7	0.015	7.7
Peak Luminosity, 1e32, cm ⁻² s ⁻¹	0.93		2.3		9.3	

MEEIC parameters for e-p collisions

	not cooled		pre-cooled		high energy cooling	
	р	e	p e		р	e
Energy, GeV	250	2	250	2	250	2
Number of bunches	111		111		111	
Bunch intensity, 10 ¹¹	2.0	0.31	2.0	0.31	2.0	0.31
Bunch charge, nC	32	5	32	5	32	5
Normalized emittance, 1e-6 m, 95% for p / rms for e	15	37	6	14.7	1.5	3.7
rms emittance, nm	9.4	9.4	3.8	3.8	0.94	0.94
beta*, cm	50	50	50	50	50	50
rms bunch length, cm	20	0.2	20	0.2	5	0.2
beam-beam for p /disruption for e	1.5E-03	6	3.8E-03	15	0.015	15
Peak Luminosity, 1e32, cm ⁻² s ⁻¹	0.93		2.3		9.3	

The distance between the linacs axis is 6.3 m

80% fill factor gives the radius 2.5 m showed

Current work:

Lattice development Evaluation of superconducting magnet design

MEeIC: ERL some parameters

eBeam energy in the last right arc: $E_{max}-\Delta E_{perpass}/2$ D.Kayran Energy losses per full turn [KeV]=88.5 E[GeV]⁴/R[m]

Highest energy pass

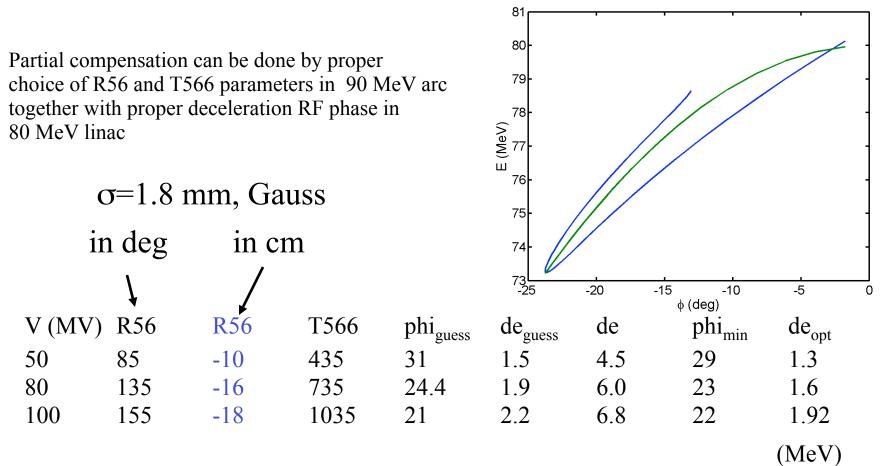
R (0.8 filling factor), m	2.5	2.5	2.5	5
Current, mA	50	50	50	50
Number of passes	3	3	3	3
E _{max} /E _{arc} , GeV	2/1.67	3/2.5	4/3.33	4/4
Dipole magnetic field, T	2.2	3.3	4.4	2.7
Energy losses per arc (half turn), MeV	0.05	0.7	2.2	2.3
Power losses per arc, kW per m kW/m	2.5 0.32	35.2 4.5	110.7 14.1	115.2 7.33

Energy loss to Cavity Wakes

E.Pozdeyev

qb (pC)	5000		I(A)	0.05	
fb (Hz)	1.00E+07		ncav	360	
sig(mm)	kii (V/pC)	kii_adj (V/ pC)	Vloss (MV)	Ploss (kW)	dVtot (MV)
1.500	-4.336	-3.817	-6.8706	-343.530	-9.288
1.800	-3.797	-3.281	-5.9058	-295.290	-8.136
2.000	-3.504	-2.990	-5.382	-269.100	-7.47
2.500	-2.951	-2.437	-4.3866	-219.330	-6.138
5.000	-1.744	-1.232	-2.2176	-110.880	-3.186
7.500	-1.304	-0.796	-1.4328	-71.640	-1.872
10.000	-1.071	-0.567	-1.0206	-51.030	-1.548

Related issues:


-Compensation of average energy loss (Vloss), to eliminate energy difference in the same pass for accelerating and decelerating beam. (Second harmonic cavities?)

-Managing HOM power output.

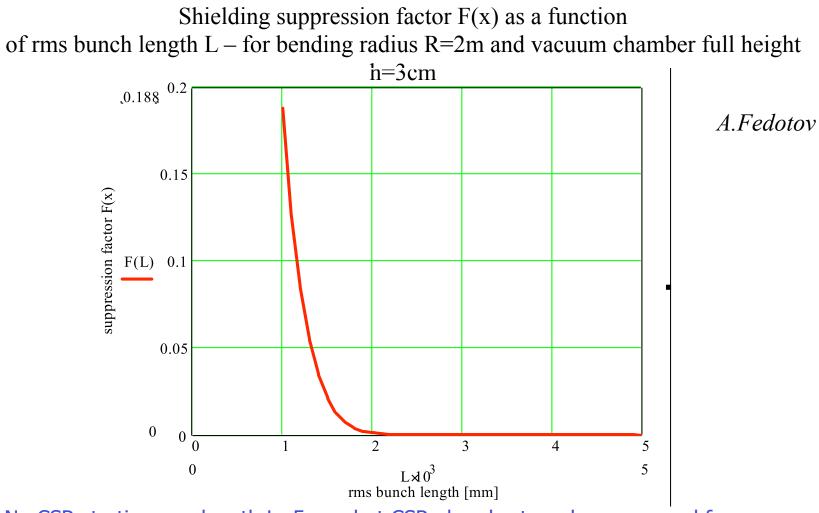
-Reduction of the energy spread (dVtot) for lower energy (10 MeV) transfer

Energy spread compensation

E.Pozdeyev

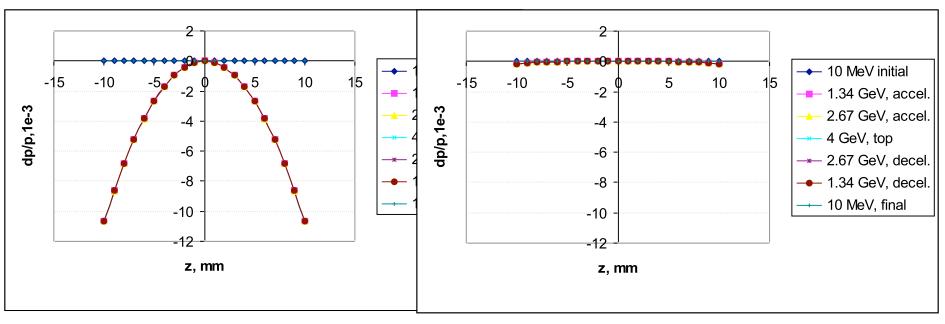
Limit on minimum bunch length for CSR to be suppressed by shielding: $\sigma_{th,min} = \sqrt{\frac{6h^3}{\pi R}}$ A.Fedotov h - beam pipe aperture R - magnet bending radius

We take the smallest number


of R=2m for estimate:

For R=2m (for turn around inside the tunnel):

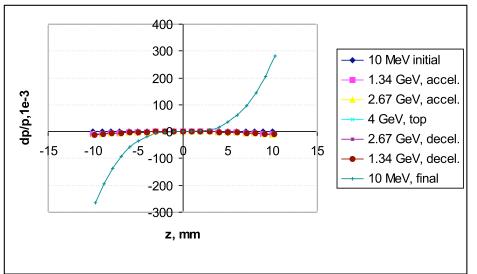
- If h=1cm then CSR will be completely shielded for bunch length 1mm rms (full length 4.8mm) or larger.

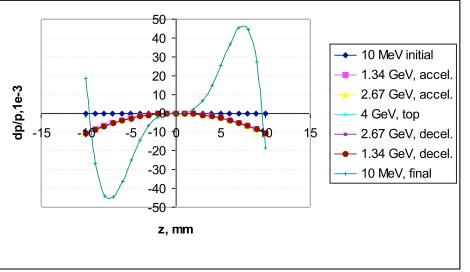

- If h=3cm will be completely shielded for 5mm (full length 2.6cm) or larger. But even for 2mm rms – reduction factor is F=0.001.

 σ_{min} =5mm, for h=3cm σ_{min} =1mm, for h=1cm

No CSR starting rms length L=5mm, but CSR already strongly suppressed for rms bunch length L=2mm -> F=0.001.

Momentum spread versus longitudinal coordinate during acceleration and deceleration




R 56 = 0, no 3^{rd} harmonic RF

 $R_56 = 0$, with 3^{rd} harmonic RF

For +- 5mm bunch, the momentum spread is acceptable even without 3rd harmonic RF

Remaining momentum spread after energy recovery

 $R_56 = 10 \text{ mm}, T_566=0 \text{ mm},$ no 3rd harmonic RF

Conclusion: no 3rd harmonic cavity required.

 $R_{56} = 10 \text{ mm}, T_{566} = 1000 \text{ mm},$ no 3rd harmonic RF